Solar-Powered, Long-Endurance UAV for Real-Time Onboard Data Processing

Given the wide range of possibilities, unmanned aerial vehicles (UAVs) represent a growing market in CPS and they are perceived as an "enabling technology" to re-consider the human involvement in many applications on a global scale. One of the major challenges in enabling this growth is UAV endurance. This is directly related to the amount of energy available to the UAV to perform its mission. This proposal looks to increase UAV endurance by trading off UAV performance with energy efficient computing. This requires mapping of mission and goals into energy needs and computational requirements. The goal of the project is to show that this trade can enable long-duration flight especially when solar energy is utilized as a primary energy source.

The ambitious plan is to develop a light weight and efficient aircraft capable of maneuver-aware power adaptation and real-time video/sensor acquisition and processing for up to 12 hours of continuous flight (this limit being set by daylight hours). This project aims to expanding the theoretical and practical foundations for the design and integration of UAVs capable of real-time sensing and processing from an array of visual, acoustic and other sensors.