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Abstract

Resource reclaiming schemes are applied in reservation-
based real-time uniprocessor systems to support efficient re-
claiming and sharing of computational resources left un-
used by early completing tasks, improving the response
times of aperiodic and soft tasks in the presence of over-
runs. In this paper, we introduce algorithm M-CASH, a new
efficient reclaiming scheme for multiprocessor platforms.
M-CASH leverages the resource reservation approach of-
fered by the Multiprocessor CBS server offering signifi-
cant improvements. The correctness of the algorithm is for-
mally proven and its performance is experimentally evalu-
ated through several synthetic simulations.

1. Introduction

In most real-time systems, task feasibility is guaranteed
by means of offline schedulability tests based on worst-case
execution times (WCETs). While such an approach can be
fine for very critical systems composed of hard real-time
tasks with mostly regular execution times and precisely es-
timated WCETs, it can easily lead to an excessive waste
of resources when task execution times exhibit a high vari-
ance. Furthermore, the hardware architecture of modern
processors can negatively impact the WCET computation
due to the unpredictability of elements such as caches and
prefetching queues.

In many systems of interest hard real-time tasks must co-
exist together with soft real-time tasks, such as multimedia
applications, whose temporal requirements are expressed in
term of a desired quality of service. The WCET case is often
rare but many times higher than the average case; for MPEG
players, for example, the amount of time needed is strongly
dependant on the frame type. For such soft tasks, guarantees
based on average execution times are typically acceptable;
however, it is required that in the case of an overrun(i.e.,
the soft task executes for more than it is guaranteed), the

schedulability of hard tasks is not compromised. Unfortu-
nately, common real-time schedulers including the unipro-
cessor optimal Earliest Deadline First (EDF) are not able to
distinguish tasks based on criticality.

A general technique for limiting the effects of overruns
relies on the concept of resource reservation: each task is
assigned a fraction of the computational resources and it is
handled by a server which ensures that the task does not re-
quire more resources than its assigned share. The scheme
is akin to a two level scheduling framework: a top-level
scheduler menages the execution requests produced by each
server, which in turn serves the instances of its assigned
task. Temporal isolation is thus guaranteed among tasks,
in the sense that the behavior of one task can not compro-
mise the schedulability of a different task as long as the to-
tal amount of reserved resources is within a proven bound.
An efficient method for resource reservation under the EDF
scheduler is the Constant Bandwidth Server (CBS) [2]. A
problem of such algorithm is that the performance of the
system is dependant on the correct allocation of resource
shares; in particular, as we will show in Section 2, if one
server has an early completion other servers are not able to
efficiently reuse the amount of computational resources left
unused. To overcome this problem, different resource re-
claiming techniques [7, 10, 8, 11] have been proposed to
augment the CBS approach with efficient reclamation and
sharing of resources. Such techniques have been proven to
be successful in maximizing the responsiveness of soft and
aperiodic tasks, improving the usage of system resources
while preserving all hard real-time constraints.

Unfortunately, all such algorithms do not easily extend
to the multiprocessor case, which is becoming increasingly
important. Uniprocessor systems are quickly becoming in-
adequate to service the high level of performance required
by today’s embedded systems. In fact, a general shift from
unicore to multicore processors can be seen in the indus-
try both in the general purpose and embedded domain, in
an effort to increase performance while keeping chip com-
plexity and power consumption at acceptable levels.



Research on real-time multiprocessor systems is fairly
active. Although an optimal algorithm exists [3], it is typi-
cally unsuitable for most applications due to its extremely
high number of preemptions. Therefore, despite being sub-
optimal, classic uniprocessor schedulers like EDF or Fixed
Priority (FP) are still being applied to the multiproces-
sor case; proven schedulability conditions for hard systems
have been proposed in [9, 6, 4]. In particular, in this work
we will be concerned with global EDF scheduling, where all
tasks are kept in a single ready queue and job are allowed
to migrate among processors. The CBS server has been ex-
tended to the multiprocessor case, algorithm M-CBS, in [5].
However, to the best of our knowledge there is lack of re-
source reclaiming schemes for multiprocessors in literature.
In this paper, we introduce M-CASH, a resource reclaim-
ing mechanism for identical multiprocessor platforms built
on top of the M-CBS algorithm. Our new scheme for multi-
processor has features similar to the CASH reclaiming al-
gorithm [7] developed for uniprocessor platform. As we
prove in Section 3, our algorithm is able to maintain tempo-
ral isolation and guarantee all hard task executions (based
on the sufficient EDF schedulability bound introduced by
Goossens et al. [9]) while providing efficient and effective
resource reclaiming among servers.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce some notation and describe the M-
CBS servers and its problematics in the presence of early
completing tasks. In Section 3 we introduce our new M-
CASH scheme, show how it can be used to solve the re-
source reclaiming problem, and prove its correctness. Fi-
nally, in Section 4 we validate the effectiveness of our pro-
posed scheme by confronting it with M-CBS through sev-
eral synthetic simulations and in Section 5 we provide con-
cluding remarks and future work.

2. M-CBS

Since our resource reclaiming scheme is based on the
Multiprocessor Constant Bandwidth Server (M-CBS) first
introduced by Baruah et al. in [5], we will start by describ-
ing such algorithm. Our description and proofs are different
from the ones introduced in [5], being more closer to the de-
scription of the original CBS server for uniprocessors [1, 2];
this is done to introduce the reader to the notation and ba-
sic lemmas that we will use in proving the correctness of
the M-CASH reclaiming scheme in Section 3.

We consider a real-time multiprocessor platform � com-
prised of

�
identical processors and � M-CBS servers�����	�
�
�
����

. Each M-CBS server
���

is characterized by an
ordered pair ��� ��������� , where � � is the server’s maximum
budget and

��
is the server period. The ratio � �������� � is

known as the server bandwidth and denotes the fraction of
the capacity of one processor that is assigned to the server;

define �! �#" � �%$ � � � as the system utilization and&  �('*),+ �.-/�0-/� � � as the maximum server bandwidth.
Each server

���
serves a single task 1 � , which is composed

by a stream of jobs 1 �32 �54 �6$7��89�
�	�
� �
, each characterized

by an arrival time : �32 and an execution time ; �<2 . Each job
1 �32 may be further characterized by a deadline = �32 , but we
do not require it, nor we impose any constraint on interar-
rival times; hence, the model is general enough to represent
hard, soft, periodic or aperiodic tasks.

At each instant, an absolute deadline = � and a budget ; �
is associated with each server

���
. Each time a new job of

1 � arrives, it is enqueued in a FCFS queue held by
���

. The
server is said to be active if its job queue is not empty, oth-
erwise it is idle; whenever the server is active, the job at the
top of the queue is inserted in the ready queue with dead-
line equal to = � . Jobs are scheduled by global EDF. A sin-
gle ready queue exists in the system; at each instant, the�

higher priority (with shorter absolute deadline) jobs are
scheduled for execution. The server budget and deadline are
updated using the following rules:

1. Whenever the server executes, the budget ; � is de-
creased by the same amount. Upon reaching 0, the bud-
get is recharged to � � and = � is incremented by

��
.

2. Whenever the server transitions from idle to active at
some time > , a test is executed. If ; �@? �0= �BA > � � � ,
no update of deadline and budget is necessary; other-
wise, ; � is recharged to � � and the deadline is assigned
a new value: = �DC >�E ��

.

To ease the algorithm discussion, we now introduce
some further notation. Note that from the point of view of
the global scheduler, each server performs three actions: it
inserts an execution request in the ready queue each time
the server transitions from idle to active state; it removes
the execution request when it transitions from active to idle;
it postpones the deadline of its execution request once the
budget is depleted. Note that postponing a deadline is effec-
tively equal to removing the current execution request and
inserting a new one. Hence, the execution requests made by
a server

��
are effectively equivalent to a series of server

jobs
� �32 �54 �F$7�G8H�	�
�
� �

each of which is characterized by an
arrival time :HI�<2 , that is the time at which the execution re-
quest is inserted in the ready queue, a deadline =9I�<2 which is
the server deadline for that execution request and a compu-
tation time ;	I�<2 which is the amount of time that the server
executes on behalf of

� �32
(equivalently, the amount of bud-

get consumed by
� �<2

). It is important to note that :9I�32 � ;
I�32 do
not necessary correspond to : �<2 � ; �<2 .

A clarifying example is presented in Figure 1, where
a system with

8
processors comprised of two hard tasks

1 ��� 1
J and a server
��K

serving an aperiodic task 1 K is repre-
sented. In the figure, up arrows represent arrival times while
down arrows represent deadlines; furthermore, we superim-
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Figure 1. M-CBS Example

pose the current budget of server
��K

over its schedule and
we represent the execution of jobs of 1 K with different col-
ors. A server job

��KG�
is created at > �*)

when the first task
job 1 KG� arrives. When 1 K J arrives at : K J �,+

, it is simply en-
queued at

� K
. When the budget of

� K
is consumed at time

> �.-
, a new server job

� K J is created. Hence, note that the
execution of

� KG�
corresponds to the execution of both 1 K.�

and part of 1 K J .
We now prove that algorithm M-CBS is correct, in the

sense that server jobs never miss their deadlines, or equiv-
alently, whenever a server deadline = � is reached, ; � �/)

.
Hence, the server is able to guarantee an execution time
� � every

��
time units to its served task. We first introduce

some definitions and basic lemmas.

Definition 1 (Demand function) The demand of a server��
, 02123 � � > � � >�J � is the sum of the computation times of server

jobs with arrival time greater than or equal to > � and dead-
line less than or equal to > J :

02143 � � > � � > J � � 5276 8:9�<;:=?>�@BA C 9�<; - >�D ;
I�<2

Lemma 1 For each server
� �

and E*> �GF ) � E > J F > � :
02123 � �0> � � > J �IH � � � > J A > � �

Proof.
Since the server job deadline is the deadline of the server
while the server job is active, Definition 1 is equivalent to
the demand definition in [1]; hence, the lemma follows di-
rectly from Theorem 1 in [1]. J
Definition 2 (Uniform multiprocessor) A uniform mul-
tiprocessor platform �LK is composed by

� K processorsM K� �
�
�	�
� M KN . Each uniform processor is characterized by a
speed O � : a job that executes on

M K� for P time units com-
pletes O � P units of execution. Furthermore, we define:

O  $Q � ' ),+�G-�� - N Q O �

�  Q � 5�.-/�0- N Q O �

Note that given the above definition our previously in-
troduced identical multiprocessor platform � is a special
instance of a uniform multiprocessor platform with O, �
$7�G�  � �

.
The correctness of M-CBS is then derived as follows:

first, we introduce a suitable uniform platform �RK such that
the set S of server jobs generated by the M-CBS schedule
is feasible on �TK , i.e. there exists an algorithm that feasibly
schedules S on �TK . The following theorem (see [9]) is then
used to prove that S is schedulable by EDF on our identi-
cal multiprocessor platform � .

Theorem 2 Consider a uniform multiprocessor system �UK
with O  Q H $

, and let S denote an instance of jobs (with
deadlines) that is feasible on �RK . Then S is feasibly sched-
uled by global EDF on � if:

� F �  $Q A O  $Q$ A O  $Q
Lemma 3 No server job

���32
misses its deadline if server��

is assigned to a dedicated uniform processor with speed
O ��� � � .
Proof.
Since the processor is dedicated, no server job can be pre-
empted. By contradiction. Assume that a deadline is missed
at time > J . Let > � be the last time before > J such that the
server transitions from idle to active state. By definition
and since the processor is dedicated to the server, > � cor-
responds to the activation time of a server job

� �32
; further-

more, all previous jobs
� � V �7W ? 4 , must have finished be-

fore > � . Since a deadline is missed at > J , it follows that all
jobs executed in X > � � > JBY must have deadlines less than or
equal to > J and the server continuously executes in X > � � > JBY ;
hence, it must hold that

CBZ[ �]\ >�@�A >�D_^` � a >�J A > � . But since
O � � � � , it follows: =cbed � � > � � > J � a � � � > J A > � � , which con-
tradicts Lemma 1. J



Theorem 4 No server job
� �32

executed on the identical
multiprocessor platform � misses its deadline under the fol-
lowing conditions: &  H $��

�  H � A &  �� � A $ �

Proof.
Due to Lemma 3, each server

� �
can be feasibly executed

on a dedicated uniform processor
M K� with speed O � � � � .

Hence, all servers can be feasibly executed on a uniform
platform �LK with

�  $Q � �  and O  $Q � &  . Since �! H
� A &  �� � A $ �

, it directly follows by simple algebraic ma-
nipulation that

� F I�� Q�� ` � Q� � ` � Q . Therefore, we can apply The-
orem 2 to the set S of all server jobs generated by � and con-
clude that no server job

���32
misses its deadline on the iden-

tical multiprocessor � . J
Note that the scheduling condition of Theorem 4 is

equivalent to the schedulability bound expressed in [9] for
periodic task sets scheduled by global EDF; hence, we can
say that each M-CBS server requires no more bandwidth
than a periodic task with utilization equal to the server band-
width. The following theorem proves that the server is able
to provide its entire reserved bandwidth to the served task.

Theorem 5 A periodic task 1 � , with period and relative
deadline equal to

� �
and execution time equal to the maxi-

mum budget � � , can be feasibly scheduled by M-CBS server� �
under the conditions of Theorem 4.

Proof.
Clearly :HI� � � : � � since

� �
is initially idle. Due to Theo-

rem 4,
��� �

will finish before =HI� � ; hence, since the compu-
tation time of 1 � is equal to � � , 1 � � will complete before
its deadline leaving a budget ; � � )

. If we assume that a
job 1 �<2 meets its deadline leaving zero budget, then by fol-
lowing the same reasoning, job 1 �32��D� will be released at
: �32��D� � = I�32 and will therefore meet its deadline as well.
Hence, the theorem holds by induction. J

Theorems 4 and 5 imply that the schedulability of 1 � de-
pends only on the parameters of the servers and not on the
execution times of the other tasks in the system; hence, we
conclude that the M-CBS mechanism is effective in pro-
viding temporal isolation among tasks. However, M-CBS
servers are not able to efficiently reclaim unused compu-
tation time. An example is provided in Figure 2(a) for a
system composed by

� � $
processor. The system is

comprised by three servers
� ����� J ����K with budgets � � �$7� � J �	�H� � K ��


and period
�D� � + � � J � $ )9� �K � $�8

,
each serving a periodic task with period and relative dead-
line equal to the server period. At time > �.-

, job 1 J � com-
pletes one time unit earlier than the allocated budget, while

job 1 K.� experiences an overrun of 1 time unit. In spite of
the budget left free by job 1 J � at > � -

,
� K

will postpone
the deadline at time > ��

, forcing 1 KG� to miss its deadline.
As we will see in the next section, using the reclamation
mechanism introduced by M-CASH task 1 K.� can be feasi-
bly scheduled despite the overrun1.

3. M-CASH

The M-CASH scheme augments the M-CBS algorithm
by adding a powerful reclaiming scheme; it extends the ca-
pacity sharing mechanism introduced by [7] for uniproces-
sor systems to the identical multiprocessor case.

The M-CASH algorithm holds a global queue of capac-
ities (the M-CASH queue) ordered by non decreasing ab-
solute deadline. Each time a server

���32
becomes idle with

budget greater than zero, a new capacity � )�� �<2 �0;�� � =�� � is
inserted into the queue with the current server deadline and
the remaining capacity. Each time there is a capacity at the
head of the M-CASH queue and one or more servers with
deadline greater than or equal to the capacity deadline are
scheduled for execution, those servers consume the capacity
instead of their own budget. To get the key idea of the algo-
rithm, in Figure 2(b) we show the M-CASH scheduling for
the same system of Figure 2(a). At time > �,-

, a new capac-
ity with value 1 and deadline 10 is inserted into the queue.
This capacity is consumed by server

��K
, enabling the com-

pletion of job 1 KG� within its deadline = K.� �F$ 8
.

We now formally describe the rules of algorithm M-
CASH. To ease the description, let us introduce some addi-
tional notation. At each time > , let � be the set of servers
scheduled for execution on the identical multiprocessor
platform � . Furthermore, let ����� be the subset of servers
executing with absolute deadline strictly less than the dead-
line of the capacity �0; � � = � � at the head of the M-CASH
queue:

� ����� ��� � ��� + �����! �"$#&%(' = � ? = �*)
If no capacity is present in the M-CASH queue at time > ,
we simply impose � � � . Finally, let + be the number of
idle processors at time > , i.e. + � � A-, � , where

, �
denotes the cardinality of set � . The set of M-CASH rules
can then be expressed as follows:

1. Whenever a server
� �/. � executes, its budget ; � is

decreased by the same amount. Upon reaching 0, the
budget is recharged to � � and = � is incremented by

� �
.

2. Whenever a server
� �

becomes idle and ; � a )
, a new

capacity � )�� �32 �0; � � ; � � = � � = � � is inserted in the ca-
pacity queue and ; � is discharged to 0.

1 While this simple example describes a uniprocessor system for the
sake of simplicity, M-CAH allows to perform resource reclaiming ef-
ficiently in a multiprocessor environment.
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Figure 2. Example overrun

3. Whenever a server
� �

becomes active, ; � is recharged
to � � and the deadline is assigned a new value: = � C'*) + �0= � � > � E � �

.

4. Whenever a capacity ��;�� � =�� � is at the head of the
M-CASH queue, the servers in � A � (i.e., servers
with deadline greater or equal to =&� ) execute consum-
ing the capacity instead of their own budget; further-
more, the capacity is also consumed on each of the
+ idle processors. Hence, in an interval of length P ,
; � is decreased by an amount P � , � � A � � E-+ � �
P � � A , � � .

5. Whenever ;�� reaches 0, the capacity is removed from
the queue.

Note that the M-CASH rules are an extension of the
CASH rules for uniprocessor systems [7], in the sense that
a capacity can only be used by servers with deadline greater
or equal than the deadline of the capacity and the capac-
ity is discharged when a processor is idle. In particular,
for

� � $
the M-CASH algorithm reduces exactly to the

CASH algorithm. Furthermore, note that from the point of
view of the global scheduler a M-CASH server performs
the same actions as a M-CBS server; hence, we can also ab-
stract the execution requirements of a M-CASH server as a
series of server jobs

� �32
. However, to the contrary of a M-

CBS server the computation time ; I�<2 of a M-CASH server
job

� �32
can be greater than the the amount of budget con-

sumed during
� �32

, since the server can execute consuming
a capacity instead of its own budget.

A comprehensive example of a M-CASH scheduling on� � 8
processors can be found in Figure 3. The system

consists of four servers
�D� �G� J �G�K,�G��� with different periods

and bandwidth � � � )9� +
. Since �  �6$ � - � &  � ) � +

, the
server set can be feasibly scheduled by global EDF on two
processors. The job set is as follows:
� 1 � is a hard sporadic task; the first task job arrives at
> � )

, the second at > �/-
while all successive jobs

arrive after the minimum interarrival time
� � � �

.

� 1 J is a firm task; its first instance 1 J � arrives at > � )
and finishes after 3 time units, inserting a capacity
� )�� J � � 
9�	$ � � into the M-CASH queue at time 5. The
next periodic instance is skipped.

� 1 K is a hard periodic task; 1 KG� arrives at time > � )
and

executes for 9 time units out of the 10 reserved by
� K

.
� 1 � is an aperiodic task. The activation times and com-

putation times of its jobs 1 �.� � 1 � J are shown in figure.

In the interval X �H�_- Y , the capacity � )�� J � � 
9�	$ � � is at the
head of the M-CASH queue and the set of scheduled server
is � � � �K,�G��� ) . Furthermore, note that server

���
has to

postpone its deadline at > � +
; therefore, all the servers in

� have deadline greater than or equal to = � and � ���
.

Hence, the capacity is decreased by
� A , � � 8

time
units while

� K ��� �
do not consume their budget. To under-

line the fact that servers consume the capacity instead of
their own budget, we have used a different color for por-
tions of server job execution where a capacity is consumed.
Note that at time > � -

server
� �

becomes active and pre-
empts

�K
. Since = � J � $7$ ? =�� � $ �

, in the interval
X - �
	 Y � � � ����� ����� ) � � � ����� ) . Therefore, the capacity
is decreased by

� A , � � $
time unit;

���
uses the ca-

pacity while
�D�

has to consume its own budget. The ca-
pacity is depleted at time > ��	

and removed from the
queue. At time > ��$ -

,
� K

becomes idle and a capacity
� )�� K.� � 8H�G8��7� is inserted in the queue. Since in the interval
X $ -9�	$� Y � � � � ����� � ) � � A , � �F$

, the capacity is de-
pleted and removed from the queue at > �($�

. Note that
since one of the processors is left idle, the capacity is effec-
tively wasted.

3.1. Proof of correctness

To prove that algorithm M-CASH is correct, we need to
again show that server jobs never miss their deadline. We
use a framework similar to the one in Section 2; however,
the fact that a server can execute consuming a capacity in-
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Figure 3. M-CASH Example

stead of its own budget complicates the analysis, since the
demand of a server job can exceed the server’s reserved
bandwidth. We will therefore use the following approach:
instead of considering the M-CASH scheduling of a set S
of server jobs on � , we will consider the EDF scheduling of
a transformed set of jobs S21 on the same identical multipro-
cessor platform � . S31 is composed by two types of jobs: a
set

� 1 of transformed jobs
� 1�32 that are used to represent

the executions of server jobs in S where the server bud-
get is consumed, and a set of capacity jobs � )�� 1 that are
used to represent the consumption of a capacity by either
a server or an idle processor. In particular, to account for
the fact that each capacity 4 �<2 can be consumed on multi-
ple processors and with different rates in different time in-
tervals, multiple capacity jobs � )�� 1 �<2 are generated by each
capacity in the M-CASH queue. Consider for example the
M-CASH schedule in Figure 3 in the interval X �9�
	 Y . Since
capacity � )�� J � � 
9�	$ � � is consumed by two servers in the
interval X �H�_- Y and one server in the interval X - �
	 Y , its con-
sumption is represented by three capacity jobs in S 1 ; also,
the transformed job

� 1� J executes for only 4 time units in-
stead of the 6 time units of the original job

��� J .
Definition 3 (M-CASH job transformation) Consider a
set S of server jobs generated by M-CASH system � . We
can then define job sets

� 1 , � )�� 1 as follows.

� For each
���<2 . S , we have

� 1�<2 ��: 1 �32 � : I�<2 � = 1 �32 �
= I�32 � ; 1 �<2 � ; I�<2 A P �32 ) . � 1 , where P �32 is the amount
of time that

���<2
executes consuming a capacity.

� For each capacity � )�� �<2 ��; � � = � � in the M-CASH
schedule of S , set � )�� 1 is comprised by a set � )�� 1 �<2
formed as follows.

– Let >65 be the time when � )�� �32 is inserted in the
M-CASH queue (equivalently, the time when

� �<2

finishes). Furthermore, let > K � be the first time
when � )�� �32 is consumed and let > � be the last
time such that the consumption rate is constant in
interval X > K � � > � Y and equal to 798 � � A , � as
defined by M-CASH Rule 4. Then � )�� 1 �32 is com-
prised by 7 �

capacity jobs all with the same ac-
tivation times :21 �32G� � > 5 , deadline =21 �<2G� � =�� and
computation time ;�1 �<2G� � > �BA >]K � .

– Until the capacity is depleted, for each successive
interval X >]K8 � >&8 Y such that � )�� �32 ��; � � = � � is con-
sumed at a constant rate 798 � � A , � , add
798 capacity jobs to � )�� 1 �32 , all with the same ac-
tivation time :21 �<2 8 � >&8 � � , deadline =31 �32 8 V � = �
and computation time ; 1 �<2 8 V � >&8 A > K8 .

Then S 1 , the M-CASH job transformation of S , is the union
set of

� 1 and � )�� 1 .

To better understand how the transformed set S:1 is cre-
ated, consider once again Figure 3. The three capacity jobs
generated by � )�� J � � 
 �
$ � � are:
� for the interval X >]K � � �H� > � � - Y with >65 � �

, two ca-
pacity jobs with activation time :1 J ��� � �

, deadline
=31 J ��� � $ �

and computation time ;�1 J ��� � $
;

� for the interval X >]KJ �,-9� > J � 	 Y , one capacity jobs with
activation time ::1 J � J � -

, deadline =31 J ��� � $ -
and com-

putation time ;;1 J ��� � $
.

The capacity � )�� K.� � 8H��8��7� generates a single capacity job
with activation time :21 K.��� �($ -

, deadline =31 K.��� � 8��
and

computation time ;�1 KG��� � 8
. Note that this capacity job

does not correspond to the execution of any server in S ; it
is added to the capacity job set � )�� 1 to represent the fact
that � )�� K.� � 89��8��7� is consumed on a idle processor. In gen-
eral, note that in the interval between the capacity creation
and its depletion there can be intervals of time in which the



capacity is not consumed at all, either because
�

proces-
sors with strictly shorter deadline execute or another capac-
ity with shorter deadline is at the head of the capacity queue.
Hence, each capacity job is created either when the gener-
ating server job finishes or the capacity consumption rate
changes. Furthermore, note that since a capacity job is only
created when the corresponding capacity is consumed, the
sum of the computation times of all capacity jobs generated
by a capacity �0; � � = � � is in fact equal to ; � .

The importance of the job transformation lies in the fact
that the scheduling of S and S21 are equivalent, as the fol-
lowing lemmas show.

Lemma 6 The global EDF scheduling of job set S21 on �
(where capacity jobs are arbitrarily given higher priority
than server jobs with the same absolute deadline) is equiv-
alent to the M-CASH scheduling of S on � , in the sense that:
� if

� �32
executes consuming its own budget in the M-

CASH schedule of S at time > , � 1�32 executes in the EDF
schedule of S31 at time > ;

� for each server job
� �32

executing consuming a capac-
ity in the M-CASH schedule of S at time > , a capac-
ity job with deadline less than or equal to =HI�32 executes
in the EDF schedule of S31 at time > .

Proof.
The proof follows directly from Definition 3, since for each
capacity � )�� �<2 and each interval X > K8 � > 8 Y , � A , � capac-
ity jobs are executing instead of the � A � server jobs
that execute consuming a capacity, and therefore all capac-
ity jobs created at > 8 � � finish exactly at > 8 (note that since
in the M-CASH schedule of S the capacity is not consumes
in X >&8 � � � >]K8 Y , the capacity jobs in S21 are preempted by ei-
ther server jobs or capacity jobs with smaller deadline). J

Lemma 7 If S31 is feasibly scheduled by global EDF on � ,
then no job in S misses its deadline when scheduled by M-
CASH on � .

Proof.
Whenever a job

���<2
executes in the M-CASH schedule of S ,

either job
� 1�32 or a capacity job with earlier or equal dead-

line than = I�32 must execute in the EDF schedule of S21 by
Lemma 6. Since all jobs in S 1 meet their deadline, it thus
follows that job

���32
must meet its deadline as well (note

that the computation time ; I�<2 of
���<2

is equal to the compu-
tation time ;�1 �<2 of

� 1�<2 plus the amount of capacity consumed
by
��32

by definition). J
Instead of proving that the M-CASH scheduling of a job

set S is correct under the same conditions �  H � A

&  �� � A $ � � &  H $
of Theorem 4, we can thus prove that

set S31 can be feasibly scheduled by global EDF under those
conditions. In particular, we would like to reuse the same
framework as in Section 2: first we show that set S21 is feasi-
ble on a uniform multiprocessor with speeds O � � � � , then
using Theorem 2 we conclude that S:1 is schedulable by EDF
on identical multiprocessor � and therefore due to Lemma
7 S is also schedulable by M-CASH. Unfortunately, this ap-
proach does not directly work since it is not always possible
to schedule S31 on such uniform multiprocessor. To under-
stand the problem, consider the first server job

� � �
of server� �

and suppose that it completes at time > leaving a capacity
� )�� � � ��; � � = � � = I� � � in the M-CASH queue; furthermore,
suppose that only one capacity job in � )�� 1 �<2 is generated.
Then we would like to schedule both the transformed job� 1� � and � )�� 1 �32 on a dedicated uniform processor with speed
O � � � � . However, if the condition ��=!� A > � � � ? ;�� holds,
it is easy to see that the capacity job will miss its dead-
line. As an example, consider server

��� ��� � � + � �� �  �
and suppose that its server job

��� � ��: I� � � )9� = I� � �  �
executes for two times units in X + ��- Y , leaving a capacity
4 � � �0; � � 8H� = � �  � in the M-CASH queue. Then the corre-
sponding capacity job with :1 � ��� � -9� =31 � ��� � 9� ;;1 � ��� � 8

has
a demand equal to �

�C �� @�@ � 8 �� @�@ � $ a � � � )9� �
; hence, it is

not schedulable on a uniform processor with speed O �D� � � .
We can solve the problem by slightly modifying the anal-

ysis. First, we introduce a second job transformation from
S 1 to a set S�K that is schedulable on a uniform multiproces-
sor with O ��� � � . Then, we extend Theorem 2 to show that if
S�K is schedulable on the uniform platform than S:1 is schedu-
lable by global EDF on the identical platform � . Since by
Lemma 7 the schedulability of S21 implies the schedulabil-
ity of S , we can then conclude that M-CASH is correct. Be-
fore formally defining S�K , let us provide the main intuition
behind the job sets S � S21 � S�K . S 1 is the comprehensive job
set comprised of server jobs

� 1 and capacity jobs � )�� 1 ,
which thus represent the execution of the rules of M-CASH
”transformed” into an EDF scheduling. The original job set
S can be though of as the collection of server jobs from

� 1 ,
where each server job is ”merged” with all the capacity jobs
that it consumes; capacity jobs consumed by idle proces-
sors are non included. Then, the serial job transformation
S�K is the set of server jobs from

� 1 , where each server job is
”merged” with all the capacity jobs that it generates; all ca-
pacity jobs are thus merged. Hence, the execution of a se-
rial job

� K�<2 in S�K corresponds to either the execution of
� �<2

in
S consuming its own budget, or the consumption of 4 : � �<2
on any processor. The main intuition is that server jobs

� K�<2
have the same characteristics of M-CBS server jobs, and are
therefore schedulable on the uniform platform.

Definition 4 (Serial job transformation) Consider a set S
of server jobs generated by M-CASH system � and its M-
CASH job transformation S21 . Then the serial job transfor-



mation S�K of S is comprised by a set of jobs
��� K�<2 ) : for each

job
� 1�32 in

� 1 ,
� K�32 � �0:cK�<2 � :21 �32 � =�K�<2 � =31 �32 � ;eK�32 � ;;1 �32 E ; � )

where ;�� is the capacity of � )�� �<2 (zero if no capacity is
generated by

���<2
) or equivalently the sum of the computa-

tion times of all the associated capacity jobs � )�� 1 �<2 .
Lemma 8 No job

� K�<2 misses its deadline if
� K� is assigned

to a dedicated uniform processor with speed O �D� � � .

Proof.
Since ;;1 �32 is equivalent to the amount of budget consumed
by

��32
, it follows that the computation time of

� K�32�� ;:K�<2 �
;;1 �<2 E ; � � � � . Since furthermore :2K�<2 � :21 �<2 � : I�32 and
=�K�32 � = 1 �32 � = I�<2 , the proof follows directly from Lemma 3.
J

Theorem 9 Consider a uniform multiprocessor system �UK
with O  Q H $

, and let the serial transformation ScK be fea-
sible on � K . Then the EDF schedule of S 1 on � (where ca-
pacity jobs are arbitrarily given higher priority than server
jobs with the same absolute deadline) is feasible if:

� F �  Q A O  Q$ A O  $Q

Proof sketch.
Consider the set of jobs

� 1�32�� � )�� 1 �<2 , comprised of the M-
CASH transformation of

���<2
and all the capacity jobs gen-

erated by � )�� �32 (if any). The sum of the execution times of
all such jobs is equal to the computation time ; K�<2 of the se-
rial transformed job

� K�32 and furthermore all considered jobs
have the same deadline. Hence, the only difference among
the two transformed sets is that while some of the capac-
ity jobs in the M-CASH transformed set can execute in par-
allel, the execution of

� K�<2 is completely serialized. There-
fore, we expect that a multiprocessor system can execute
more work on the M-CASH transformed set than on the se-
rial transformed set. Since by Theorem 2 ScK is feasible on � ,
S 1 is thus feasible on � as well.

The complete proof can be found in appendix. J
Using Theorem 9 we can now prove our main theorems,

which mirror Theorems 4 and 5 for M-CASH.

Theorem 10 No M-CASH server job
� �32

misses its dead-
line on � under the following conditions:

&  H $��
�  H � A &  �� � A $ �

Proof.
Consider the set S of all M-CASH generated jobs and the

transformed sets S21 � S�K . Due to Lemma 8, S�K is feasible on
a uniform platform �TK with

�  Q � �  and O  Q � &  . From
�  H � A &  � � A $ �

it follows
� F I�� Q � ` � Q� � ` � Q , therefore

by Theorem 9 S21 can be feasibly scheduled by EDF on the
identical platform � . Hence, by Lemma 7 no server job in S
misses its deadline. J

Theorem 11 A periodic task 1 � with period and relative
deadline

��
and execution time � � can be feasibly sched-

uled by M-CASH server
� �

under the conditions of Theo-
rem 10.

Proof.
Since the computation time of 1 � is equal to � � and because
of Theorem 10, job 1 � � will complete before its deadline
leaving a budget ; � F )

. We can thus reuse the same rea-
soning as in Theorem 5 to complete the proof. J

As a conclusion to this section, we want to stress that the
proof of correctness is strongly dependant on the bound be-
ing used. In particular, the assumptions made on the proof
sketch of Theorem 9 only hold because we can prove that
no scheduling anomaly is present under the assumptions of
Theorem 9.

4. Experimental evaluation

Both the M-CBS (in its original version detailed in [5])
and the M-CASH algorithm have been implemented in
the real-time simulator RTSIM [12] to measure the per-
formance of our resource reclaiming scheme through sev-
eral synthetic simulations. In particular, we have consid-
ered a system of

� � +
processors with � � 8$)

tasks:
1 ���	�
�	�
� 1 ��� are periodic hard tasks, each served by a server
with maximum budget equal to the task worst-case compu-
tation time; 1 ���,�
�	�
�	� 1
J 5 are periodic soft tasks that can ex-
perience overload conditions. All task periods are chosen to
be uniformly distributed in the interval X $ ) ) � � ) ) ) Y . In each
experiment, the performance of the server algorithm is eval-
uated by computing the average tardiness and the normal-
ized response time for all soft tasks over a run of

� ) )9��) )�)
time units. Given a soft job 1 �32 �
$ 	 H	� H 8$)

, the job tar-
diness 
 )�� 0 �<2 and normalized response time  ��� � �<2 are de-
fined as follows:


 )�� 0 �32 �
'*) + ��d �32 A = �327�_) �

= �32 A : �<2

 ��� � �32 � d �32 A : �<2
; �32

where d �<2 is the finishing time of 1 �32 . The global tardiness
and normalized response time are computed by averaging
over all soft jobs executed in the run.
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Figure 4. Average Tardiness for � � ) � 	

Each soft task is assigned a server bandwidth � I
� )9� 


,
while hard tasks are constrained to utilizations no greater
than � I . Hence, following Theorems 5,11, we can guaran-
tee hard task schedulability if �  H � A � � A*$�� � I

� 
9� $
.

In order to use the maximum guaranteed bandwidth, we can
thus impose a total bandwidth for hard tasks equal to the
computed bound of


9� $
minus the soft task bandwidth, i.e." ������D� ��� � � A � � A $ � � I

A " J 5���D��� � I
� $ � �

. Hard task
utilizations are chosen to be uniformly distributed with sum
equal to

$7� �
, and worst case computation times are com-

puted based on task periods and utilizations.
We have analyzed several task set scenarios by varying

two critical parameters. The first considered parameter � is
the minimum relative computation time for all hard tasks,
or formally:

� � ; ��� ��
; � E �G�
$�H � H $ -

where the computation time of any job 1 �32 is chosen to be
uniformly distributed in X � ; � � ; � Y . Hence, � provides a mea-
sure of the amount of bandwidth left free by early complet-
ing hard jobs. The second parameter 	 is the maximum soft
task overload, defined as:

	 � ; ��
���
� � E �G�	$ 	 H � H 8$)

where each soft job 1 �32 can execute for at most ; �<2 � 	�� �
time units. We present two sets of experiments: in the first
one, we fix � to a predetermined value and we analyze the
average tardiness and response time varying 	 , while in the
second set of experiments we fix 	 and vary � instead.

In Figures 4 and 5 we plot the results for the first set of
experiments, with � � ) � 	

and � �.) � �
respectively and 	
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Figure 5. Average Tardiness for � � ) � �

varying from
8

to


. Due to space constraints and since the

response time graphs exhibit similar trends, we only plot
the average tardiness with 95% confidence intervals. As ex-
pected, the tardiness is smaller for the experiments with
� �/) � �

, since hard tasks execute for less time thus leav-
ing more bandwidth for soft task execution. In both exper-
iments, M-CASH significantly outperforms M-CBS by re-
ducing the average tardiness up to 6 times. Furthermore,
note that in both cases the tardiness is very close to zero for
� H 8H�<8

. Since this value corresponds to more than a 100%
increase in soft task computation time in the worst case,
we could expect to see larger tardiness values. Indeed, this
would be the case on a uniprocessor EDF platform where
the guaranteed bandwidth is equal to 1. However, follow-
ing Theorems 5,11 we can only guarantee hard task execu-
tion for a total server bandwidth equal to


9� $
, which means

that the residual bandwidth of
+ A 
 �5$ � ) � �

available on the
four processor system can not be assigned to any server. In
fact, note that even for � � 8

the tardiness is not zero, signi-
fying that in the worst case the residual bandwidth can not
be used. However, in the average case overruning servers
are indeed able to exploit the residual bandwidth, thus low-
ering the average tardiness significantly.

In Figure 6 we show the second set of experiments where
the maximum overload is fixed to a value 	 � 89� 	

and � is
varied in the interval X ) � 
 �_)9� � Y . Since no capacity is left free
by hard tasks for 	 �%$

, the graphs tend to explode for
high values of 	 . Again, note that while M-CBS shows sig-
nificant tardiness even for small values of 	 , M-CASH is
able to obtain decidedly better performance, achieving ex-
tremely small tardiness values for � H )9� 	

.
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5. Conclusions

In this paper, we have introduced and proved correct M-
CASH, a new scheduling algorithm that augments the M-
CBS server for resource reservation in multiprocessor sys-
tem with a powerful resource reservation mechanism. Sim-
ulations based on the RTSIM platform show that M-CASH
is able to greatly improve the performance of soft tasks in
the presence of overruns with respect to M-CBS. Hence,
we conclude that the implementation of M-CASH is in fact
beneficial for systems of mixed hard-soft real-time tasks ex-
ecuted on an identical multiprocessor platform.

As future work, we plan to extend our resource reclaim-
ing scheme in two directions. First of all, as detailed in Sec-
tion 3.1 the correctness of M-CASH depends on the schedu-
lability bound being used. Although the considered bound
is strict, it is still pessimistic since it relies on task utiliza-
tions only and not on all task parameters. It would be in-
teresting to extend our analysis to less pessimistic bounds
such as the one in [6]. Furthermore, note that independen-
tely from the bound, the guaranteed bandwidth is always
less than the number of available processors. Hence, there
is some residual capacity in the system that is not assigned
to any server and is not consider by M-CASH; this capacity
can still be used by overruning tasks possibly causing con-
tinuous deadline postponement (typically known as dead-
line aging). We are currently developing an extension to M-
CASH that is able to avoid this problem.

Finally, while in this work we have been concerned with
global scheduling only, partitioned scheduling, where tasks
are statically assigned to processors, is also popular for
real-time multiprocessor systems. While the static nature

of partitioned scheduling makes it difficult to directly ap-
ply the M-CASH scheme, we think that restricting migra-
tion to overruning jobs should still allow for efficient inter-
processor resource reclaiming.
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A. Proof of Theorem 9

The proof closely follows the one of Theorem 2 in [9]. To
ease the notation, define

�� 1�<2 � � 1�32 � � )�� 1 �32 . Furthermore,
let S�KV be the set of the

W
shorter deadline jobs in ScK and sim-

ilarly S 1V be the union set of the
W

sets
�� 1�32 with shorter dead-

line (note that all jobs in
�� 1�<2 have the same deadline). Fi-

nally, let + � � � � K � S KV � > � be the amount of time that jobs in
S�KV execute on �LK in the interval X )9� > Y when scheduled by a
scheduling algorithm

�
; similarly + ������� � � � S21V � > � is the

amount of time that jobs in S21V execute on � in X )9� > Y when
scheduled by global EDF.

We begin by proving the following lemma:

Lemma 12 Under the assumptions of Theorem 9, for any
possible scheduling algorithm

�
:

E W F )9� E/> F ) � + ������� � � � S 1V � > � F + � � � � K � S KV � > �

Proof.
By contradiction. Suppose that it is not true, in the sense
that there is a instant of time > 5 such that the amount of
work done on S�KV on �LK is greater than the amount of work
done on S 1V on � . Then there must be at least one job

�� 1�32 ��� K�<2
such that:

+ ������� � � � � �� 1�32 ) � >&5 �B? + � � � � K ����� K�32 ) � >&5 �
Let

� K�<2 be such job with earliest activation time. Then since
:31 �32 � :cK�32 , it follows that

+ ������� � � � : 1 �32 � > 5 � F + � � � � K � : K�32 � > 5 �
and hence the work done on S21V over the interval X :cK�32 � >&5 Y
must be less than the work done on ScKV over the same inter-
val. Now denote with � the amount of time over the interval
X :cK�32 � > 5 Y during which all

�
processors are busy on � ; con-

versely, let 	 � > 5 A : K�32 A � be the amount of time during
which at least one processor is idle on � . We make the fol-
lowing two observations.

� First note that since the amount of work done on
�� 1�<2

is strictly less than the amount of work done on
� K�<2

and the total computation time of jobs in
�� 1�32 is equal

to ;eK�<2 , it follows that some job in
�� 1�<2 has not finished

yet at >&5 . Furthermore, since S 1V is the union set of theW
sets

�� 1�32 with shorter deadline, the EDF schedule of
S 1V is not affected by jobs in S31 A S31V . Hence, follow-
ing Definition 3 and Lemma 6 each capacity job in

�� 1�<2
is activated either when

� 1�32 finishes or a previous ca-
pacity job in

�� 1�32 finishes, which means that there is al-
ways at least one active job (i.e. either executing or in
the ready queue) of

�� 1�<2 in the interval X :cK�32 � > 5 Y . There-
fore, jobs in

�� 1�<2 must execute for at least 	 time units

in X :cK�<2 � >&5 Y , while
� K�<2 can not execute for more than

O  Q �
� E�	 � time units. It thus follows:

O  $Q ��� E	 � a 	 (1)

� Since at least one job of
�� 1�32 is active in X :cK�<2 � > 5 Y , it fol-

lows that the amount of time S31V executes in X :cK�32 � > 5 Y
is at least

� � E�	 , while the amount of time S KV exe-
cutes in the same interval is at most

�  $Q ��� E�	 � . It thus
follows: �  $Q����*E�	 � a � � E�	 (2)

By adding
� A $

times Inequality 1 to Inequality 2, we get
[9]: �  $Q A O  $Q$ A O  $Q a �
which contradicts our assumption. J

Using Lemma 12 we can prove the main theorem by in-
duction on the value

W
in S21V .

Base Case. Since S315 is the empty set, it is clearly feasible
on � .

Induction Step. Assuming that S21V can be feasibly sched-
uled by global EDF on � , we need to prove that S21V �D� is
schedulable on � as well. Again, note that the schedule of
S 1V is not affected by jobs in S21 A S31V ; hence, all jobs in S21V
meet their deadlines in the schedule of S21V �D� by the induc-
tion hypothesis. It therefore remains to prove that jobs in
S 1V �D� A S31V meet their deadlines; assume, without loss of gen-
erality, that they are the jobs in

�� 1�32 .
Now consider the schedule of ScKV �D� on �LK . Since S�K is fea-

sible on �TK , it follows that S�KV �D� must be feasible as well, in
the sense that there exists a scheduling algorithm ��� 
 on
�TK which produces a feasible schedule for ScKV �D� . Therefore
by Lemma 12:

+ ������� � � � S 1V �D� � = 1 �<2 � F + ����� 
 � � K � S KV � � � = K�32 � �
� 5
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But since no job in S31V �D� has deadline greater than =21 �<2 and
the sum of the computation times of jobs in S:1V �D� is equal
to the sum for jobs in ScKV �D� , if follows that all jobs in S21V �D�
must complete before = 1 �<2 . Hence,

�� 1�<2 is schedulable as well.
Since all jobs in S31V �D� meet their deadlines, the theorem fol-
lows.


