
Feedback Based Real-Time Fault Tolerance
– Issues and Possible Solutions

Xue Liu, Hui Ding, Kihwal Lee, Lui Sha, Marco Caccamo
{xueliu, huiding, klee7, lrs, mcaccamo}@cs.uiuc.edu

Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract— Fault tolerance is an important aspect in real-
time computing. In real-time systems, tasks could be faulty
due to various causes. Faulty tasks may compromise the
safety and performance of the whole system and even cause
disastrous consequences. In this paper, we study the possi-
bilities of applying feedback control of software execution to
real-time systems for fault tolerance purposes. A new fault
tolerance architecture called ORTGA (On-demand Real-Time
GuArd) is proposed. We argue the advantages and benefits
of using ORTGA for fault tolerance in real-time systems.
We also list research problems faced by ORTGA and point
out directions for possible solutions.

I. INTRODUCTION

Real-time and embedded systems are now a cen-
tral part of our lives. Different from general computer
systems, a real-time system is considered to function
correctly only if it returns the correct result within the
system-wide timing constraints [2]. Reliable functioning
of real-time systems is of paramount concern to the
millions of users that depend on these systems everyday.
However, faults and failures can occur in real-time
systems. Though failures can be caused by both hardware
(e.g., electromechanical devices) and software, in this
paper we focus on how to tolerate software faults in
real-time systems.

Feedback is a universal mechanism which exists in
many disciplines. Human uses feedback to correct faults
and progress. Government uses feedback to avoid cor-
ruption and advance. Car cruise control uses feedback
control to meet the targeted speed. Feedback is also
commonly used in software industry: many Web sites
(such as Amazon.com) use client feedbacks to improve
their design; software vendors often employ user feed-
backs to help select new features to be included in
future releases; Microsoft uses application crash report
(a kind of feedback) to improve the reliability of Win-
dows operating system. In this paper, we discuss using
feedback to achieve software fault tolerance. Specifically,
we introduce ORTGA (On-demand Real-Time GuArd),
a new fault tolerant architecture for real-time control

systems.
Our objective is to identify some cutting-edge research

problems and point out possible solutions on using
feedback for fault tolerance in real-time systems.

The rest of the paper is organized as follows. The
ORTGA architecture is presented in Section II. The
research issues of feedback based software fault toler-
ance are elaborated in Section III within the context of
ORTGA. Directions for possible solutions are given in
Section IV. We provide related work in Section V and
conclude our paper in Section VI.

II. ORTGA SOFTWARE FAULT TOLERANT

ARCHITECTURE

In this section, we discuss the ORTGA software fault
tolerant architecture. One of the most important aspects
of ORTGA is it uses feedback control of software exe-
cution to achieve fault tolerance. In order to understand
this notion, let’s first look at what are essential elements
related to feedback control to make a general system
(such as a social system – a government) fault tolerant?

Faults abound in any complex system such as a human
government. The first step in achieving a fault tolerant
system is to detect the faults. Common ways to detect
faults in a government include auditing or collecting
employee feedbacks. We call this step as (fault) identifi-
cation step. After a fault is identified, we need to decide
what is a good way to get rid of the fault, or at least
confine the fault from propagating to other functional
units. The result is a correction scheme. We call this
second step as decision step. The last step is to make
sure the correction scheme is executed in order to correct
the fault occurred. We call the last step as execution step.

These three steps correspond to a typical feedback
control loop for a mechanical system, as shown in
Figure 1. The (fault) identification step is similar to
sensing (where the sensor finds state or output errors
and feed it back to the controller). The decision step
is similar to control (where the controller calculates the
control values to correct the error). The execution step

Mechanical
System (Plant)

Sensor

Controller Actuator _

Reference
Input

(Decision) (Execution)

(Sensing)

Fig. 1. A typical feedback control loop

is similar to the actuation (where the actuator puts the
control values from the controller into action).

Following this analogy, we now introduce the architec-
ture of ORTGA. We also discuss how ORTGA employs
feedback to make a real-time control system fault toler-
ant. The architecture of ORTGA is shown in Figure 2.
Similar to the Simplex architecture [5], in ORTGA the
software component of the plant under protection is
divided into a high-assurance-control (HAC) subsystem
and a high-performance-control (HPC) subsystem. The
HAC subsystem is a control software which was proven
to be reliable. HAC’s simple construction let the system
designer leverage the power of formal methods and a
rigorous development process. From the system level,
high-assurance OS kernels such as certifiable runtimes
are usually used in the HAC. From the application
level, well-understood classical controllers designed to
maximize the controlled plant’s stability region is also
used.

The HPC subsystem complements the conservative
HAC core. From application level, an HPC can use
more complex and advanced control technologies for
higher control performance, including those difficult to
verify, for example, neural network control. From system
level, COTS real-time OS and middleware designed to
simplify the application development can be used in
HPC. However, these software components may not be
certifiable and could contain faults.

Unlike Simplex, in ORTGA the HAC and HPC sub-
systems do not run in parallel. At any time, there is
only one instance of either HAC or HPC is running.
Normally, the HPC controls the plant. However, the de-
cision logic in the decision module ensures that the plant
state under the HPC stays within an HAC-established
stability region (to be discussed in Section IV). If this is
violated, the HAC will be kicked in and takes over the
system. As we can see from Figure 2, ORTGA achieves
fault tolerance by using feedback control of software
execution. At every decision time, the decision module
gets the state feedback from the plant and determines
if the current state is still within the HAC-established

Simple high assurance
control subsystem
(HAC)

Complex high
performance
control subsystem (HPC)

 Data Flow Block Diagram

 Plant

Decision

Sensing (feedback)->Decision (control/error correction) -> Execution (actuation)

Fig. 2. Feedback Control of Software Execution

stability region. If it is, the HPC still controls the plant;
otherwise, the HAC is activated and it takes over the
control of the plant. The decision module determines
which output should be used for the plant. Then the
plant will execute the control output values accordingly.
These Sensing(feedback) → Decision(control) → Execu-
tion(actuation) steps constitute the feedback control of
software execution (cf. Figure 1). By using the HAC to
guard against possible faults in the HPC in real-time,
ORTGA achieves fault tolerance.

III. RESEARCH ISSUES IN FEEDBACK BASED

REAL-TIME FAULT TOLERANCE

In this section, we discuss the research issues in
feedback based real-time fault tolerance, concentrating
on the ORTGA architecture. To this end, we first show
a real-time control system and use it as a motivating
example to illustrate the following discussions.

A. A Real-Time Control System

We consider a real-time inverted pendulum control
system. Suppose there are N inverted pendulums run-
ning. Each inverted pendulum i is protected by an
ORTGA instance Oi. Each ORTGA instance is respon-
sible for fault tolerance in the corresponding pendulum
(plant). Within each ORTGA instance, there is a high
performance controller task (HPCi) and a high assur-
ance controller task (HACi). In this paper, we discuss a
simple scenario where the two controller tasks for each
pendulum have the same period and the same worst case
execution time. Extensions to this model are left for fu-
ture research. In ORTGA, at any time, for any pendulum
i, either HPCi or HACi is running but not both, so
the controller tasks can be represented as a single real-
time task τi. We use Ti to denote the sensing-control
loop period and Ci to denote the worst case execution
time of task τi. For control systems, the task deadline is

Fig. 3. Double inverted pendulums running on a machine

usually the same as the task period, i.e. Di = Ti. Figure 3
shows such a system with two pendulums (N = 2).
Each ORTGA instance Oi, (i = 1, 2) is controlling one
inverted pendulum. Each ORTGA instance corresponds
to a real-time task τi, (i = 1, 2) running on the same
CPU.

In real-time operating systems (RTOS), tasks are
scheduled using some predetermined scheduling algo-
rithms. There are two major types of priority-based
scheduling algorithms, fixed priority scheduling algo-
rithms and dynamic priority scheduling algorithms [2]. A
typical example of fixed priority scheduling algorithms
is Rate Monotonic (RM) scheduling; while a typical
example of dynamical scheduling algorithms is Earliest
Deadline First (EDF) scheduling.

Figure 4(a) shows the schedule of two real-time tasks
under RM scheduling. Task τ1’s timing parameters (in
milliseconds) are (C1, T1)=(1, 2), and task τ2’s timing
parameters are (C2, T2)=(1, 8). Under RM, tasks with
smaller periods (i.e. higher rates) have higher priorities.
So in this example, τ1 has higher priority than τ2. From
the figure, we can see that under RM scheduling, all jobs
(instances of each control task) are schedulable, i.e., able
to meet their deadlines.

HPCs may contain faults. Faulty controller thread will
cause controller task to miss deadlines or even fail,
lead to undesirable consequences such as instability, data
losses, or performance degradation. In ORTGA, if a fault
in the HPC is identified, the HPC needs to be killed
and the new controller thread (HAC) will be created to
substitute it to maintain system safety.

B. Research Issues in ORTGA

The first design issue faced by ORTGA is what
mechanism to use for online fault detection. Software
faults in real-time systems can be categorized into two
classes: logical domain faults, and execution domain

faults. The former are usually caused by the logic of
the underlying algorithm itself, which defines the com-
putational logic. The latter are caused by various faults
within the software other than algorithm logic, such as
memory leakage, segmentation fault, divide by zero, spin
in an infinite loop, deadlock, and live lock etc. The
approaches to deal with logical domain faults are more
of an algorithm design issue than a fault containment
and tolerance issue. Therefore, in ORTGA we target our
goal at the tolerance of execution domain software faults.
Noticing that a common symptom of execution domain
faults is that no system output is given within the task
deadline, so we can use a heartbeat message mechanism
to detect execution domain faults in real-time systems. In
the heartbeat message mechanism, each controller thread
sends out a brief message to a monitor thread to indicate
its healthiness soon after it sends out its control value
in each period. When no heartbeat message is received
within a time period for a thread, it is possible that the
thread has execution domain faults. On the other hand,
if the heartbeat message arrives in a timely fashion, we
know that there is no execution domain faults in the
thread.

Heartbeat message fault detection mechanism has
the advantage of easy implementation. It is also non-
intrusive, since no modification is needed in the OS
kernel.

Given the heartbeat message fault detection mech-
anism, there are two important research issues to be
further addressed in ORTGA.

Q1. How to treat false alarms when detecting faults
of a controller thread?

For real-time control tasks, it is shown that usually
several deadline misses can be tolerated without causing
fatal problems such as instability [3]. What’s more, even
if a controller thread misses one heartbeat message, it
may still be healthy, since other possibilities including
temporary communication channel failure could exist.
Considering these two factors, the monitor should not
be designed too “aggressively” to identify a controller
thread as faulty. One or more missing heartbeat messages
may be allowed, otherwise false alarms could occur.
False alarms should be avoided since they cause unneces-
sary recovery procedures, which may degrade the system
performance, or even cause unschedulability. This is
because unnecessary recoveries affect the schedules of
other tasks running on the same CPU.

Q2. When a controller thread CTi is identified as
faulty and a recovery decision is made, when should
the recovery procedure be started?

0 2 4 86
0 2 4 86
0 2 4 86(b) recover 2 immediately

(a) Normal schedule of 1 and 2
(c) recover 2 late

Fig. 4. Illustration of a late recovery is more desirable.

In generic software systems, when a fault is identified,
the common solution is to recover the faulty compo-
nent as soon as possible to minimize the performance
loss. For example, the Recovery Oriented Computing
(ROC) [4] fault tolerance approach aims to minimize
Mean Time To Repair (MTTR). However, this wisdom
may not be true in real-time systems. To understand this,
we show the following example as illustrated in Figure
4.

In this example, the timing parameters of the two real-
time tasks are (C1, T1)=(1, 2), (C2, T2)=(1, 8). These
two tasks are schedulable under RM scheduling, as
shown in Figure 4(a). Now suppose task τ2 is identified
as faulty by the monitor at time t = 2.0, as shown
Figure 4(b). Suppose the overhead of killing the faulty
thread (HPC) and replacing it with a new thread (HAC)
takes 1.5 milliseconds. If the recovery procedure takes
higher priority (i.e. to recover τ2 as soon as possible),
the recovery procedure is started immediately at t = 2.0.
The recovery procedure will finish at t = 3.5. Now τ1’s
second job begins execution at time t = 3.5, and will
miss its deadline, which is 4.0. However, if we delay
τ2’s recovery and let τ1’s second job begin execution at
its release time t = 2.0 (as shown in Figure 4(c)), then
the recovery of τ2 begins at t = 3.0 and the recovery

is finished at t = 4.5. As a result, no deadline will be
missed for both tasks.

From this example, we clearly see that the determina-
tion of the right time to recover is crucial to guarantee
schedulability in fault tolerant real-time systems. Some-
times, a “late” but timely recovery is more beneficial
for all the tasks in the system to meet their timing
requirements. Comparing to the objective of minimizing
MTTR in ROC, one central problem of ORTGA is to
determine RTTR (Right Time To Recover).

IV. SOME POSSIBLE SOLUTION DIRECTIONS

As discussed in Section III, the design of ORTGA
raises some interesting research problems. In this section,
we will briefly discuss some possible solutions to these
problems. Due to space limit, the discussions here are
rather incomplete and preliminary than thorough. Our
motivation is trying to identify some possible directions
for future research of feedback based fault tolerant real-
time systems.

First, it is easy to see that Question 1 and Question 2
are closely related. On one hand, in order to minimize
false alarms, the monitor should not treat heartbeat
message misses too aggressively. On the other hand, the
decision of when to recover highly depends on fault
detection. If a fault is detected too late, the recovery
procedure may not have enough time to react, hence
the recovery may fail. Moreover, as shown in Figure 4,
even if a fault is detected early, sometimes a late but
timely recovery may be more desirable since it helps
to maintain system schedulability. So the core question
here in terms of fault detection and recovery is what
is the right time to treat a thread (who has missed
heartbeat messages) as faulty and recover it. A too early
decision may increase false alarms and affect system
schedulability unnecessarily, while a too late decision
will delay the recovery and lead to system failure.

Here, we propose a possible solution which treats the
fault detection and recovery timing issues in one frame-
work. The idea is to solve the two problems together in
a time reversal fashion. Figure 5 shows a timeline of the
proposed recovery framework.

Suppose the execution of recovery procedure takes a
time overhead of ts. ts includes the time of killing the
previous faulty HPC thread and the time of replacing
it with the new HAC thread. Our minimum goal is
to ensure that after the recovery, the system being
controlled will still be stable. First, we determine the
stability region of the controlled system. The stability
region is defined as a set of plant states, outside which

τ

HB1 (t1)

When to recover?

Recovered
Threads

HB2 (t2)

Prediction ts

Monitor find
HB3 missing

Stability Region S
of Controlled Plant

(t3) tr

S

Fig. 5. A detection and recovery decision framework.

the system will not be stable anymore under the current
controller. A stability region of a controlled system under
a specific controller can be determined using Linear
Matrix Inequality [1]. Due to space limit, we omit the
details here. Interested readers are referred to [5]. The de-
termined stability region of the controlled system under
the HAC controller is shown by the shaded ellipsoid S in
Figure 5. From this scenario, we see that for controller
task τ (corresponding to the case when HPC is running),
heartbeat messages (HB1, HB2) were received by the
monitor at time t1 and t2, which indicates the HPC
was healthy. Along with the heartbeat messages, updated
plant states are also sent to the monitor. However, at time
t3, the 3rd heartbeat message was still not received. The
monitor then needs to decide whether the HPC should
be identified as faulty and if so, when the recovery
procedure should be launched.

After we have determined the HAC-established stabil-
ity region S of the system, we can find the latest time
point tr satisfying the following criterion – the system
state will still be within the HAC-established stability
region after the recovery procedure is completed, only
if the recovery procedure is scheduled by time tr. We
use notation x(t) to represent the state of the plant at
time t. tr is determined such that x(tr + ts) ∈ S under
the current HPC control. Therefore tr is the latest time
when the recovery procedure should begin to maintain
the plant stable. In this way, if until time tr, no new
heartbeat message is received by the monitor from this
HPC thread, the recovery procedure has to be kicked in.

V. RELATED WORK

Recovery-Oriented Computing (ROC) [4] is an ap-
proach for general fault tolerant systems. A major goal
of ROC is to recover (by methods such as reboot or
micro-reboot) the system as soon as possible when a fault
has occurred, i.e. minimizing the MTTR (Mean Time To
Repair) rather than maximizing MTTF (Mean Time To

Failure). Hence ROC offers high availability1. ORTGA
differs from ROC in two aspects. First, when the HPC
is diagnosed as faulty, the recovered controller (HAC)
is not a simple restart of the HPC. In stead, HAC is a
predetermined reliable core controller which guarantees
to make the plant stable2. Secondly, as we showed in
Section III-B, in real-time systems a late but timely
recovery may be more desirable in some situations.
Hence one fundamental research issue of ORTGA is to
determine RTTR (Right Time To Recover) instead of
minimizing MTTR.

Simplex [5] is a software architecture which facilitates
the building of dependable real-time control systems.
It provides dynamic toleration of software faults. In
Simplex, analytical redundant high-assurance controller
(HAC) runs in parallel with high-performance controller
(HPC). This unnecessarily lowers the total CPU uti-
lization available to other active tasks when no fault
occurs. This drawback keeps the application of Simplex
from those industrial applications where both an efficient
resource utilization and a high fault coverage are desired.
ORTGA solves this problem by running the HAC in
an on-demand fashion. Hence it achieves much higher
resource utilization.

VI. CONCLUSIONS

In this paper, we propose ORTGA, a feedback based
fault tolerance architecture for real-time systems. We
also discuss research issues of ORTGA and point out
possible directions of the solutions. We hope this paper
will arouse the interests of researchers and foster the
discussions in using feedback based fault tolerance for
computing systems.

REFERENCES

[1] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear
Matrix Inequalities in System and Control Theory. Society for
Industrial and Applied Mathematics (SIAM), 1994.

[2] J. Liu. Real-Time Systems. Prentice Hall PTR, 2000.
[3] P. Marti, R. Villa, J. Fuertes, and G. Fohler. On real-time control

tasks schedulability. In European Control Conference, 2001.
[4] D. A. Patterson et al. Recovery-oriented computing (ROC): Moti-

vation, definition, techniques, and case studies. Technical report,
UC Berkeley Computer Science Technical Report UCB//CSD-
02-1175, March 2002.

[5] D. Seto, B. H. Krogh, L. Sha, and A. Chutinan. Dynamic control
system upgrade using the simplex architecture. IEEE Control
System Magazine, 1998.

1Recall that availability is traditionally defined as the ratio of
MTTF to MTTF + MTTR.

2Of course, in some application scenarios, we can use the restarted
HPC as the HAC under ORTGA architecture.

