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Abstract—Systems-on-a-Chip (SoC) devices integrating hard
processing cores with programmable logic (PL) are becoming
increasingly available. While these platforms have been originally
designed for high performance computing applications, their
rich feature set can be exploited to efficiently implement mixed
criticality domains serving both critical hard real-time tasks, as
well as soft real-time tasks.

In this paper, we take a deep look at COTS-based hetero-
geneous SoCs that incorporates PLL and a multicore processor.
We show how one can tailor these processors to support a
mixed/full criticality system, where cores are strictly isolated to
avoid contention on shared resources such as Last-Level Cache
(LLC) and main memory. In order to avoid conflicts in LLC, we
propose the use of cache coloring, implemented in the Jailhouse
hypervisor. In addition, we employ ScratchPad Memory (SPM)
inside the PL to support a multi-phase execution model for real-
time tasks that avoids conflicts in shared memory. We provide
a full-stack, working implementation on a latest-generation SoC
platform, and show results based on both a set of data intensive
tasks, as well as a complete case study based on an anomaly
detection application for an autonomous vehicle.

I. INTRODUCTION

Recently there has been an uptrend in the demand for high-
performance real-time applications. The increasing interest in
emerging technologies like self-driving cars, drone racing, edge
cloud, cube satellites, and smart manufacturing, to name a few,
has determined a shift in the type of workload that has to be
considered real-time”. Traditional CPU-intensive workload
comprises a small percentage of the real-time workload
in modern high-criticality systems, while increasingly more
memory- and I/O-intensive applications have been brought
into the picture. On the other hand, hardware manufacturers
have anticipated the demand for high-performance embedded
systems by introducing increasingly more feature-rich systems-
on-chip (SoC).

In the race to provide the future de-facto standard for
pervasive high-performance embedded systems, hardware
manufacturers have experimentally introduced a plethora of
architectural features. A number of these features have a
proven track record in the general-purpose computing domain
and there are few indications about their long-term adoption
in the embedded market. Such features include hardware
support for virtualization, the presence of multiple, potentially
heterogeneous processing elements, a rich ecosystem of high-
bandwidth I/O devices and communication channels, and more

recently the co-location of traditional CPUs and programmable
logic (PL) implemented using Field Programmable Gate Array
(FPGA) technology.

The presence of on-chip “soft” PL, tightly coupled with a
group of “hard” embedded CPUs, represents a game-changer
for systems that need to be tailored to a well-known application
scenario. This is indeed often the case for real-time systems.
In fact, this new class of platforms offer the unprecedented
ability to define new hardware components to complement
the high-performance profile of the embedded cores. If it is
possible to devise PL-defined components that mitigate the
non-determinism in high-performance CPUs, the result can
be an ideal trade-off between processing power and real-time
guarantees.

In this paper, we study how it is possible to leverage
latest-generation partially reconfigurable embedded platforms
for a system design that combines high-performance and
strict real-time requirements. In our approach, we define
multiple criticality domains to be intended as sub-shells of the
computing system. Each criticality domain may be designed
with a different trade-off between high-performance and
strict temporal determinism. For instance, a high-performance
domain may run a general-purpose OS with a complex
I/O infrastructure. Conversely, a high-criticality domain is
comprised of a Real-Time Operating System (RTOS) supporting
time-sensitive applications.

We demonstrate that it is possible to instantiate a critical
core of PL-defined components to (i) relieve interference on the
shared memory hierarchy and achieve temporal isolation among
criticality domains; (ii) support efficient inter-domain commu-
nication; (iii) co-locate a traditional task execution model with
a multi-phase execution model; and (iv) to overcome typical
limitations of traditional memory partitioning techniques. In
summary, this paper makes the following contributions:

1) We demonstrate that it is possible to leverage partially re-
configurable embedded platforms to instantiate a system
where high-performance and time-sensitive applications
co-existence under strict temporal isolation.

2) We derive schedulability results for real-time applications
that execute according to a multi-phase model while ex-
changing communication data across multiple criticality
domains;

3) We show how the flexibility offered by the PL in the



definition of memory storage, controllers, and intercon-
nects, allows preventing unwanted temporal interference
by design;

4) We provide a working implementation on one of the
latest-generations of partially reconfigurable embedded
SoCs. Our implementation is full-stack, with adaptations
at an OS- and application-level, extensions to a partition-
ing hypervisor, and generation of PL-defined hardware
blocks.

II. RELATED WORK

Several works have been proposing techniques to deal with
shared resources in multicore real-time systems at both OS and
hypervisor levels recently. Mancuso et al. profile the source
code to extract memory accesses patterns for each task [1].
Then, pages that are the most frequently used can be locked in
cache (to avoid cache evictions). Also, cache partitioning based
on page coloring helps to improve the predictability. Following
the same line, some works use coloring to partition the cache
in multicore real-time systems [2, 3, 4]. Other works focused
on making the DRAM accesses more predictable [5, 6, 7].

The use of hypervisors in multicore real-time systems is a
recent trend. Modica et al. proposed a hypervisor-based archi-
tecture targeting critical systems similar to our architecture [8].
Cache partitioning is used to provide spatial isolation, while a
DRAM bandwidth reservation mechanism provides temporal
isolation. Both cache partitioning and memory reservation
mechanisms were implemented in the XVISOR open-source
hypervisor [9] and tested in a quad-core ARM A7 processor.
Our proposed hypervisor-based approach, instead, uses a
MPSoC platform, which gives the possibility to explore other
features, such as specific FPGA DMA blocks (to handle data
transfer between PS and PL sides for instance) and data
prefetching.

MARACAS addresses shared cache and memory bus con-
tention through multicore scheduling and load-balancing on top
of the Quest OS [10]. MARACAS uses hardware performance
counters information to throttle the execution of threads when
memory contention exceeds a certain threshold. The counters
are also used to derive an average memory request latency to
reduce bus contention. vCAT uses the Intel’s Cache Allocation
Technology (CAT) to achieve core-level cache partitioning for
the hypervisor and virtual machines running on top of it [11].
vCAT was implemented in Xen and LITMU ST, Although
interesting, this approach is architecture dependent and uses
non real-time basic software support (Linux and Xen).

Kim and Rajkumar proposed a predictable shared cache
framework for multicore real-time virtualization systems [12].
The proposed framework introduces two hypervisor techniques
(VLLC and vColoring) that enables cache-aware memory
allocation for individual tasks running running in a virtual
machine. CHIPS-AHOYy is a predictable holistic hypervisor [13].
It integrates shared hardware isolation mechanism, such as
memory partitioning, with an observe-decide-adapt loop to
achieve predictability and energy, thermal, and wearout man-
agement.

Crespo et al. use hardware performance counters within the
hypervisor to regulate the memory bandwidth and also to act
on non real-time cores [14]. The work uses control theory to
do the regulation and presents a set of experiments to tune the
controller parameters.

SPM-centric OS combines scratchpad, resource special-
ization, scheduling of shared resources as well as a three-
phase model to achieve predictability in multicore real-time

systems [15]. The three-phase model is also used in this work.
It consists of a load phase, in which code/data is loaded from
main memory to the scratchpad (SPM), an execution phase,
and an unload phase in which code/data is unloaded from
the SPM to main memory. The work also proposes to split
SPM in two halves, but it uses fixed TDMA slot sizes, while
our DMA scheduling employs variable memory phases sizes,
similarly to [16]. However, in [16] the authors target single-
core real-time systems, and thus it does not schedule DMA
requests among cores. Furthermore, the proposed work ignores
output (response time is based on execution finish rather than
unload).

III. SYSTEM MODEL AND ASSUMPTIONS

In this section we summarize the system model and assump-
tions of our proposed architecture.

A. Criticality Domains

Our goal is to implement multiple criticality domains on the
same multicore SoC. Given C, the total number of cores in
the SoC, we target a system with up to C criticality domains,
so that each criticality domain is statically assigned to at least
one core. One of the key design principles is that criticality
domains are isolated with respect to each other, both in time
and space. In other words, we minimize the impact that the
activity of applications in a criticality domain can have on
tasks in a different criticality domain.

Domain Types: Albeit strong isolation exists between criti-
cality domains, each domain may have different requirements
in terms of performance, amount of memory resources, and
runtime environment. In light of this, we envision three types
of criticality domains. First, a low-critical domain is used to
perform I/O with complex devices, processing of large amounts
of data, using general-purpose libraries and applications. A
low-critical domain may run a generic operating system (OS) —
e.g. Linux — and require a large amount of memory with fast-
on-average performance. While applications in this domain are
shielded from interference from the rest of the system, no strong
temporal guarantees can be expressed due to the best-effort
nature of the software stack. Second, a high-critical domain
consolidates all the hard real-time tasks of the system, and
interfaces with simple I/O devices. In this domain, applications
have strong timing guarantees and tight bounds on their
worst-case execution times (WCET). Finally, a third mid-
critical domain is used to process tasks with intermediate
criticality. Within this domain, and unlike the low-critical
domain, temporal guarantees on performances are still provided.
Their tightness, however, is lower compared to the high-critical
domain. The number of cores allocated to high- and mid-
criticality domains is M < C.

B. Application Cores

We assume that there are high-performance application cores
in the system. These cores are connected to the main memory
using high performance interfaces. Each application core has its
own local cache and all the application cores have a shared last-
level cache (LLC). We also assume that there is a mechanism,
either in hardware or software, to partition the LLC among
the cores.



C. Tightly-coupled Programmable Logic

We assume that there exists a sizable block of programmable
logic (PL) that is tightly-coupled with the embedded processing
cores. To be considered “tightly-coupled”, the PL area should
provide high-bandwidth, low-latency communication interfaces
to (as a master) and from (as a slave) the processing subsystems
(PS) which includes the main processing cores. The number
and capacity, in terms of memory throughput, of the PL-
PS interfaces directly impacts the performance and degree
of temporal isolation that can be enforced among criticality
domains.

The presence of a tightly-coupled PL shall also allow
directly accessing I/O peripherals via dedicated high-bandwidth
interfaces. This capability directly impacts the possibility to
define in-PL high-speed DMA engines, in case they are not
included in the PS sub-shell.

D. Application Model

Real-time tasks are scheduled based on a partitioned, fixed-
priority approach. We let I' = {71,...,7n} denote the set of
real-time tasks assigned to a given core under analysis, ordered
by decreasing and distinct priorities. As discussed in Section II,
tasks follow a three-phase model. Hence, for a task 7;, we use
7;.ld to denote the time required to load into the scratchpad
its code, private and input data using DMA, while 7;.ul is
the time required to unload from the scratchpad modified and
output data. Finally, we use 7;.c™®* to denote the worst-case
execution time of 7;, 7;.¢™™ to denote its best-case execution
time, and 7;.D for its relative deadline.

We support both time-triggered and sporadic, event-triggered
task activation; consistent with the OSEK standard [17], time-
triggered tasks are simply associated with a periodic timer
event. Hence, we use 7;.c(t) to denote the maximum number
of activation events for 7; that can arrive in any interval of
time of length ¢; this is also the maximum number of jobs
of 7; that can be released in the interval. Note that for a
periodic or sporadic task with period 7;.7, we simply have
7;.a(t) = [t/7;.T; furthermore, in this case we allow 7;.D to
be greater than 7;.T" (arbitrary deadlines). Since in our model
a task outputs its results during the unload phase, the response
time of a job is defined as the time between its release and
the completion of its unload phase. The analysis in Section V
computes upper and lower bounds RI@*, R™iN on the response
time of any job of a task ;.

Real-time tasks are allowed to communicate among each
other and with applications in the non real-time partition
through buffers and IPIs, as detailed in Section VI. Consider
two communicating real-time tasks 7; and 7; allocated to
either the same or different cores, such that 7; is executed
every time 7; produces data for it. Then 7;.«(t) depends on
the number of jobs of 7; that complete in any interval of
length . Note that our activation model is consistent with the
concept of upper arrival curves / event functions in real-time
calculus [18] and compositional performance analysis [19];
hence, the corresponding theories can be used to derive arrival
patterns for event-triggered tasks and derive end-to-end delay
and buffer size bounds, as long as we can analyze the response
time for each individual task. In particular, a bound on the
number of job completions for 7; can simply be obtained as
7.t + RIAX — Rmin)

IV. PROPOSED ARCHITECTURE AND SCHEDULING MODEL

We schedule three-phase tasks on each real-time core by
pipelining execution phases and load/unload phases, using

a similar approach to [16, 15]. Each core is associated a
local memory, or SPM for short. Each SPM is divided into
two equal-size partitions, so that at run-time the scheduler
can load a task in either partition. We say that a partition is
free if there is no task currently loaded in the partition, and
occupied otherwise. Jobs execute non preemptively, alternating
between the two partitions: while we execute a job from one
partition, we simultaneously unload the previously job from the
other partition and load the next one using DMA. In details,
the schedule of load/unload phases uses the following two
rules [15]: (1) if there is a free partition and a task ready to be
loaded, then the DMA is instructed to perform the load phase;
(2) otherwise, if there is data to be unloaded for an already
finished job, the DMA performs an unload phase. In either
case, once started, a load/unload phase cannot be interrupted
by another DMA phase on the same core.

Note that because two masters (a core and a DMA) may be
concurrently accessing the same SPM, contention at the level
of the core-local SPM may arise. In this case, care must be
taken in appropriately evaluating the magnitude of contention-
induced performance degradation. Alternatively, when using
PL-defined SPMs, a design that minimizes the effect of core-
DMA contention must be performed. In this paper, we use the
latter approach.

Figure 1 depicts an example schedule (modified from [15])
with three tasks; up arrows represent release times. While
for simplicity we draw the figure assuming that all load and
unload phases take an equal amount of time to complete, in
reality their length can vary per-task. Note that each job starts
executing on the core after it is loaded in the scratchpad and
the previous job finishes executing, whichever happens last.
For this reasons, there are times when the DMA is not used.
Also note that while load phases have higher priority over
unloads, at time ¢ = 3 (and similarly £ = 5) an unload must be
performed first in order to free Partition A for the successive
load phase of task 73. If there are multiple ready tasks, the
decision of which task to schedule is made upon starting a
load phase; hence, while 7; has higher priority than 73, the
latter is executed at time 5 because 7 is released right after the
start of the load phase at ¢ = 4. This behavior causes blocking
time on the higher priority task, which we account for in the
analysis in Section V.

Execution Phase
Load Phase

¥ | Unload Phase
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Fig. 1. Scheduling on one core.

Finally, note that so far we have focused on the DMA
behavior from the point of view of a single core. However,
to avoid contention in main memory and since our platform
implements a single DMA component, in practice we have to
serialize DMA transfers between the M real-time cores. The
work in [15] used a TDMA arbitration among cores based
on a fixed slot size; the slot size was designed so that it was
possible to load or unload an entire scratchpad partition within



max
Rmz

1@

'
Hs,

Inter,

'
'
T

Inter, 1 Inter,

Inter, Interg

T2

T3

RSN I F N I Sp——

==

U__

T4

! |
Y1y YTy T

Fig. 2. Example critical instant. The task under analysis, 7;, is 73. R3'5* is
the response time for the second job of 73 from the critical instant.

B e LTy ST

PRSI pupupl B g

:l-. =

™ T Ty T3 T4 T3

V1]

T T2 TI T3

a slot. While simple, we find two issues with such approach.
First of all, it forces an even allocation of DMA bandwidth
among cores, which might be undesirable in cases where the
cores are heterogeneous, or applications are partitioned to cores
based on their different memory demands. Second, it forces
the TDMA slot length to depend on the largest scratchpad size,
which is again undesirable if the SPM size is different per-
core. Therefore, we propose an alternative mechanism, namely
TDMA at a smaller granularity, with per-core slots. In this
scheme, each real-time core j is assigned a slot size o;, with
Y= Z _, 0; being the length of the TDMA round. We do
not require the slots to be sized based on the SPM dimension;
instead, if a DMA phase cannot finish within a slot, we break
it down into multiple transfers and perform them over multiple
TDMA rounds. The price we pay is extra overhead: since it
takes some time to program the DMA controller, during each
slot we can only perform DMA transfers for a maximum of &;
time, where o; — &; > 0 represents the DMA overhead. We
show that the DMA overhead in our target platform (Xilinx
Ultrascale+) is small in Section VII.

V. SCHEDULABILITY ANALYSIS

We now show how to derive an upper bound R;"** to the
response time of a task under analysis 7;. Since we employ
partitioned scheduling for real-time tasks, we only focus on the
core under analysis executing 7; and use o, & for the DMA slot
size, without and with overhead, assigned to the core. Since
our scheduling model follows the same rules as in [16, 15],
we can use the same response time analysis in [16] (Algorithm
2), extending it to account for arbitrary deadlines.

A. Critical Instant and Worst-Case Response Time

An example critical instant for a task set where 7; = 73 is
shown in Figure 2. The Figure shows a busy interval where
two jobs of 7; are executed. The critical instant is produced
when the first job of 7; in the interval, as well as the first
job of each higher priority task, are simultaneously released
immediately after the start of a load phase for a lower priority
task (task 74 in the figure). This causes 7; and higher priority
tasks to be blocked by the execution of two lower priority tasks
(14 and 75). All other jobs are released as soon as possible,
based on the their arrival curve 7;.«(t): formally, for the k-th
job of task 7;, we derive its release time as:
(t) >k, ey

tj’k = inftzo Tj.(

where inf denotes the infimum operator !. Also note that in the
figure, the second job of 7; is blocked by another job of 74: this
is because two jobs of the same task cannot run back-to-back,
due to the need to load and unload input and output data of
the task.

Since in general a busy interval can contain multiple jobs
of 7;, we need to compute a response time bounds for all such
jobs. Hence, let R be the response time for the k-th job
under analysis of 7'z rneasured from the beginning of the busy
interval. The response time of 7; can then be bounded as:

R"™ = max R ()
and the task is schedulable if R;"** < 7;.D. Note that the
number of jobs of 7; contained in the busy interval can be
determined based on 7;.cv(t).

As an example, Figure 2 shows how to derive the response
time R3'5™ for the second job of 7;. In general, the response
time of the k-th job of 7; is obtained as the sum of three parts,

WX = B; + H; p + Fj: (1) the initial blocking interval of
ledgth B;; as proven in [15], this is the maximum between the
execution time and the load phase of any lower priority task.
(2) the interference interval of length H; ;. This interval is
composed of a sequence of smaller scheduling intervals (Inter;
to Inters in the figure); during each scheduling interval, the
execution of a task is overlapped with a load and an unload
operation. (3) The final interval of length Fj, where the job
under analysis executes, and is then unloaded.

Since the job under analysis cannot be preempted once it
starts executing, the window of time during which released
higher priority jobs can interfere with it is bounded by B;+H .
Hence, the total number of interfering jobs of higher priority
task 7; can be computed as 7;.ca(B; + H; ). In [16] it is
then proven that the number of scheduling intervals in H; j, is
bounded by:

zk—g Tj.(

In details, there are Z j;l 7;.0(B; + H; 1) intervals of higher
priority task, one blocking interval at the beginning of H; ,
and k — 1 jobs of 7;, each of which can be further blocked by
a lower priority task (for the example in the figure, this results
inlgo=24+1+1+1=5).

It remains to compute the maximum length of the I,
scheduling intervals. Since a job cannot start until it has been
loaded and the previous job has finished executing, the length
of each scheduling interval is the maximum between the length
of the executed phase, and the combined length of the load
and unload phases in the interval. Since in general we cannot
determine the precise sequence in which tasks are executed
in the busy interval, Algorithm 2 in [16] determines an upper
bound on H; 2 by creating a list of execution phases, and
combines load plus unload phases, and then takes the I; j
largest such phases. Finally, note that I; . in Equation 3 depends
on H; itself; the circular dependency is solved through a
standard response time iteration.

- ti,ka

a(Bi+Hig)+2-k—1 3)

B. Scheduling Interval Length

The work in [16] considered a single-core system; hence,
the DMA was dedicated to the core, and the length of the

INote that the infimum, rather than the minimum, is required because the
arrival curve might be left-discontinuous.

zHl-, i is referred to as F' in [16]; our notation mirrors the one in [15].
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load and unload phase for a task 7; was simply equal to 7;.1d,
7;.ul. In our system, the phase length must be adjusted to
account for the fine-grained TDMA arbitration. Figure 3 shows
the example of a generic scheduling interval Inter;, where we
execute task 7;, and in parallel load task 7; and unload task
Tp. In the worst case, the interval can start during a TDMA
slot assigned to the core under analysis, forcing that slot to
be wasted. Since DMA operations for the core under analysis
can only be performed for & time every Y, the total number
of TDMA rounds required to complete the unload phase of
7, and the load phase of 7; is equal to [(7.ld + 7,.ul)/5],
resulting in a total memory length of:

o+ [(mdd+ 1p.ul) /5] - 2. 4)

The length of Inter; is then the maximum of 7;.c™** and
Equation 4 3.

A similar logic can then be employed to derive the length
of the initial and final intervals B;, F;; combining the lengths
B;, F; and H, j then yields R;"®* based on Equation 2. Due
to space limitations, we provide the corresponding derivations
in appendix.

C. Best-case Response Time

Finally, Figure 4 details how to compute the best-case
response time R™™ for 7;. In the best-case scenario, the task
can be released when the core is idle and all partitions are free,
at the beginning of a DMA TDMA slot assigned to the core.
R?‘i“ can then be obtained as the sum of the load, execution
and unload phases of 7;. Referring to Figure 4, this yields:

RM® = [1,1d/5] - £ — (% — 0)
+ [r.cd™/8] -8 — o
+ [rout/5] - X — (X — o). (5)

VI. IMPLEMENTATION

In this section we first provide the details of the architecture
that we have considered. We then present a general overview of
the implementation and explain the details for each component.

3Note that Algorithm 2 in [16] requires the memory length to be a linear
combination of 7;.ld+7p.ul. A linear bound on Equation 4 can be immediately
obtained as 0 + X + 7;.ld - £/ + mp.ul - B /5.

A. Architectural Overview of the Platform

For our implementation, we have used Xilinx UltraScale +
ZCU102 SoC. The specifications of the chip are shown in the
Table I. There are two Cortex RS cores with each having its
own tightly coupled memory. These cores can either run in
lock-step mode or can run independently. Also, there are four
application (Cortex-A53) cores. All the application cores in
the system have their own local instruction/data caches. The
Last-Level Cache (LLC) is shared by all the application cores.
There is no dedicated SPM provided for the application cores
as is the case with the traditional high performance multicore
processors that follow standard memory hierarchy.

The SoC also includes the programmable logic (PL) with
multiple interfaces between the PL and the processing (PS)
domain. There are three interfaces going from the PS side
to the PL side. Out of the three, two are high performance
interfaces (HPMO and HPM1) where as the third interface is
the low performance interface (LPD). There are also interfaces
from the PL side to the PS side and they are named as HPC
and HP. There is 3 MB of the block ram (BRAM) inside
the PL. For rest of the section we will use BRAM and SPM
interchangeably.

TABLE I
ARCHITECTURAL FEATURES OF ZCU102 ULTRASCALE+.

Chip Name Xilinx Ultrascale Plus ZCU102
Architecture ARM Cortex A53 and Cortex R5

. 4x ARM Cortex A53 1.2 Ghz
CPU Units

2 x ARM Cortex R5 600 Mhz
DMA, GPU, CPU,
Ethernet, Programmable Logic
32KB Private I/D Cache

Processing Units

Memory Hierarchy

For AS53 IMB Shared LLC
Memory Hierarchy 32KB Private I/D Cache
For R5 128 KB of Local Tightly Coupled Memory
2 x (HPM) (PS ->PL)
Interfaces I x LPD (PS ->PL)
etween

2 x HPC (PL->PS)

4 x HP (PL->PS)
DDR 4GB 64-bit (PS)
OCM 256KB (PS)
DDR 512MB 16-bit (PL)
Block RAM 3MB (PL)

(PL) and (PS)

Memories

B. Overview of Implementation

Using the characteristics of the considered platform there
are many ways to show how one can achieve predictability or
design mixed criticality domains. We experimentally explored
various options on the platform, selecting as a final candidate
the design depicted in Figure 5. In our proposed design we
assign one of the A53 core to run Linux to take care of non-real
time tasks and reserve the other three cores to execute critical
tasks on top of a Real-Time Operating System (RTOS). A few
noticeable features shall be noted: (i) the non-critical domain is
assigned direct access to DRAM because this domain features
applications with sizable footprint; (ii) each mid- and high-
critical domain is assigned a private SPM; (iii) each of these
SPMs is dual-ported and a controller is instantiated on each
port to prevent contention between DMA and core at the SPM
controller; and (iv) the high-critical domain also occupies a
dedicated PS-PL interface to access its private SPM.

The non-critical core is also responsible for booting a
hypervisor (Jailhouse). Jailhouse allows us to partition shared
memory resources, especially the LLC and DRAM by imple-
menting page coloring [12]. We have two partitions in the
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DRAM; one to run the kernel from and another one to place
the code/data of the tasks running on the real-time A53 cores.

We propose creating Scratchpad Memory (Block RAM) in
the Programmable Logic (PL) for each core. In order for each
core to access its own scratchpad memory (SPM) there needs to
be a dedicated or fast enough interface such that each core can
access its own SPM without seeing a delay from another core.
Unfortunately, there are only two high performance interfaces
between PL and PS available in the platform and three real-
time AS3 cores. Therefore, in our design we propose the use
of one high performance interface that is shared between two
A53 cores while the third core has dedicated interface to its
own SPM memory.

Although there is another interface between PS and PL called
low performance domain (LPD) that can be used for the third
AS53 core, we opt not to use it. This is because we found
through our experiments that a core accessing the data from
the BRAM over the LPD interface is similar in performance to
the case when two cores are accessing the same HPM interface.
Hence, we decided to use a shared interface for two A53 core,
while the third has its own independent HPM interface (see
Figure 5). Another reason for doing that is to keep the LPD
interface so that we could perform the DMA transfers to/from
the SPM/DRAM on the behalf of the real-time AS53 cores. The
real-time cores rely on the TDMA based scheduling of the
DMA to load/unload tasks from the SPM memory in the PL.
The TDMA based scheduling of the DMA is handled using
the real-time RS core.

We assign 2 MB of SPM memory to the AS53 core that has a
dedicated HPM interface to the PL and a 512 KB to the other
two real time cores that share HPM1. From our experiments
we also found out that having a single ported SPM in the
FPGA lowers the performance when two entities are accessing
it at the same time. Since we want to pipeline the execution
of the current task with the load of the next task, we divide
the SPM into two halves. Moreover, we chose a dual ported
BRAM so that DMA and the A53 core both can directly write
to it at the same time.

In order to avoid the conflict between all the A53 cores we
partition the LLC by coloring since there is no hardware support
provided on the platform to achieve that. However, coloring
generally results in size reduction of the memory which in
terms of DRAM is fine because it is generally big. Since we
have very limited SPMs in the PL we end up reducing the size
of it by 1/4 as a result of coloring. To avoid the coloring effect
on the BRAM, we introduce address translator between the
A53 and the BRAM path (which is detailed in Section VI-E).

In the following subsections we provide a detailed discussion

PS-PL interface and design

on each of the main components including Jailhouse, page
coloring, address translator, how the different A53 cores
communicate using the hypervisor, RTOS, and how the tasks
are relocated from the PS DRAM to the SPM.

C. Jailhouse to partition the Shared Resources

As the hypervisor we use Jailhouse, which is a statically
partitioning, non-scheduling, real-time hypervisor [20]. Jail-
house inserts “virtual barriers” in the shared resources of a
multicore processors, such as I/O peripherals and processing
cores, transforming a symmetric multiprocessing (SMP) system
into an asymmetric multiprocessing (AMP) system. Jailhouse is
in fact a Linux driver (a mix of type-1 and type-2 hypervisors)
and favors simplicity and low overhead over sophisticated
(para-)virtualized techniques, which is ideal for real-time
systems [20]. Thus, it requires at least one core to be assigned
to Linux. Once the driver is loaded, it takes over control of
the entire hardware and reassigns the hardware back to Linux
based on a configuration file (named root cell). Then, to create
additional domains (called non-root cells), Jailhouse removes
hardware resources assigned to Linux (such as a processor
core or a specific I/O device) and reassigns them to the new
domain [20]. The idea is to have non critical tasks running on
the Linux cell and critical tasks running on isolated partitions
on top of a Real-Time Operating System (RTOS).

Virtual memory of root and non-root cells are handled by
Jailhouse. In case of this work, the A53 cores (ARM 64 bits
architecture) has a two-stage virtual memory translation. A
guest OS, such as Linux or an RTOS that supports virtual
memory, translates virtual addresses (VA) to intermediate
physical addresses (IPAs) in a transparent way, which means
that the OS has its own page tables. Jailhouse then translates
IPAs to physical addresses (PAs) and also has its own page
tables.

As the RTOS for critical tasks, which runs on non-root cells,
we use Erika Enterprise version 3, which is open-source and
OSEK/VDX certified [21, 22]. Erika supports fixed-priority
scheduling with resource access protocol and runs on top of
our Xilinx Ultrascale+ platform. We discuss the modifications
in Erika to support our system model in Section VI-G.

D. Page Coloring

In order to enforce strong inter-domain (inter-cell) and hence
inter-core performance isolation, we leverage page coloring.
In a nutshell, a physically-tagged, physically indexed set-
associative cache can be pictured as a 2D array. If we move
horizontally in the array, we move across ways; if we move
vertically in the array we move across sets. If a read/write



request for a cacheable memory location results in a cache miss,
allocation in cache occurs at a certain (set, way) coordinate.
The set is uniquely determined by the value of a group of
bits in the physical address being accessed. These bits are
referred as index bits. Next, the way is determined by the
replacement policy implemented by the controller (e.g. LRU,
FIFO, pseudo-random).

Assume now that we are able to assign physical addresses
(and hence memory) with non-overlapping indexes to different
criticality domains. In this case, applications on domain A
cannot cause cache evictions on lines allocated by domain B,
which is the premise to achieve temporal isolation in shared
caches. Contiguous physical memory regions have increasing
addresses and thus increasing cache indexes. It follows that in
order to partition cache space, different domains need to be
assigned to interleaved portions of physical memory.

For instance, in a 2 MB cache with 16-ways, where each
line is 64 bytes, each way contains 2048 cache lines. As such,
we have 11 index bits. By leveraging on virtual memory, it
is possible to assign physical memory to do domains at the
maximum granularity of a single memory page. A page is
usually 4 KB in size. Each page contains 2% = 64 lines (each
of 64 bytes). This implies that only 5 out of the 11 total bits
can be directly controlled by software when allocating physical
memory pages. The color of the page is then determined by
the exact value of these 5 bits, which go under the name of
color bits. Clearly, lines in pages with different colors cannot
evict each other in cache when accessed.

It is possible to modify the physical memory allocator in the
OS to be aware of the structure of a cache, and to implement a
color-aware allocation [23, 5, 24]. The required modifications,
however, can be heavy and have unforeseen consequences on
the stability of the OS. Moreover, the approach is not applicable
in case of closed-source OS’s.

In our approach, we leverage virtualization extensions.
In fact, we implement coloring by enforcing appropriate
restrictions on the color of pages that Jailhouse maps to IPAs
of virtualized cells. Specifically, we impose that physical pages
with non-overlapping colors are assigned to cells activated on
different cores. The advantage of this approach is twofold. One
the one hand, it allows us to localize the changes required to
implement coloring-based partitioning in a software component
(Jailhouse). On the other hand, it allows deploying unmodified
and possible closed-sources OS inside our criticality domains.
A similar technique was used in [8, 12].

E. Address Translator due to Cache Coloring

Due to the use of cache coloring to partition the SPMs,
we use only one-fourth (four colors, one for each core) of
the SPM capacity which is not an optimized approach in
terms of memory usage. To overcome this limitation, we
designed an in-house AXI (Advanced eXtensible Interface) full
hardware IP which is responsible for the destination address
translation coming from the PS to the programmable logic path.
A path here refers to an AXI connection between PS master
ports including high- and low-performance ports and targeted
hardware IP blocks. All the modules in programmable logic
are connected via AXI4 interconnects.

To access an SPM with a size of 2 MB, for instance, we need
21 bits of address provided by one of the master ports from
PS. With cache coloring enabled, two bits of the address will
be used for the color and consequently, we can only address
the SPM controller with 19 bits. As a solution, instead of

receiving 21 bits of address, the AXI Translator IP receives 23
bits (8§ MB) from the PS through the AXI, removes the specific
address bits from that, and passes it to the SPM controller.
Assuming that the address of the AXI Translator in Figure 5
has a range from 0xA0000000 to OxAO7FFFFFF which is 8
MB space, bits 12 and 13 are responsible for the cache coloring.
As an example, a request address of 0xA0023456 from a core
to the AXI Translator would remap to 0x008456 in a 2 MB
space.

Figure 5 also shows the address translator IP placement
in the design. The implemented AXI Translator module has
one slave port to be able to communicate with the master
port (connected to PS) and one master port responsible for
passing the translated address to the slave port of the SPM
controller. We need three AXI Translators in which the requests
coming from each core should be translated. With this mapping
mechanism, the SPM capacity is not affected by the cache
coloring (we do not lose space) and since the AXI Translator
IP is burst-capable, we do not lose bandwidth nor increase
latency in accessing the SPMs. Besides that, the area overhead
of the module in terms of FF and LUTSs counts compared with
the design without any translation IP are 0.57% and 0.41%
respectively while the SPM count remains the same.

F. Communication among Jailhouse Cells

The communication among Jailhouse cells (either root or non-
root cells) is accomplished by Inter-Process Interrupts (IPIs).
Originally, Jailhouse supports IPIs only among processors that
are assigned to the same cell. Since in our platform each cell
has only one processor (one for Linux and three for Erika
RTOS instances), we had to modify Jailhouse to send an IPI
to a processor that is not in the cell configuration of the sender
processor. IPI is required to interrupt Erika when new data
has arrived for its tasks. We changed Jailhouse to bypass the
IPI number 15. So whenever a processor issues an IPI 15,
Jailhouse delivers it to the receiver processor even if it is not in
the sender’s cell configuration. Thus, we allow Linux (root cell)
to send an IPI to an Erika instance (non-root cell) whenever
new data for a task running on the non-root cell arrives. To
allow the communication among the OSes, we rely on FIFO
buffers.

G. Erika RTOS Running on Real-Time Cores

This section provides the details of the Erika OS running
on real-time AS53 cores. All the real-time A53 cores run a
partitioned fixed priority scheduler and always execute from
dedicated SPM memory assigned to them. The SPM used by
a dedicated real-time A53 core and the DRAM memory used
the non-real time AS53 running Linux are both colored to avoid
cache evictions in the shared cache.

Erika OS does not support virtualization on ARMv8 CPUs,
as such it would not use VAs. By default, however, Jailhouse
performs the setup of a flat 1:1 stage-one (VA—IPA) addressing
space before booting any non-root cell. This is required to
support cacheable memory. An application in the Erika OS is
always statically compiled against VA/IPA addresses.

As shown in Figure 6, the task running on the Erika core
can be in one of the following states:

o Running: The tasks is executing from BRAM.

o Ready Loaded: The task is loaded and is ready to execute
from SPM.

o Ready Unloaded: The task is released but it is not yet
loaded to SPM.



o Completed: A task has completed.
« Waiting on Event (Unloaded): The task is waiting on a
timer or on an event to be released.

Completed

T

Completed Using |
LastData |

| Scheaned Completed
Processing the Event
Preempled

Waiting on
Event
Unloaded

Fig. 6. Overview of the Different States of a Task in SPM-Stream OS.

To allow the load and unload of code and data of Erika’s
tasks, we use the support for virtual memory implemented
in Jailhouse. We detail how code/data relocation in the next
subsection.

H. Code/Data Relocation

Relocation is the process of assigning addresses to position-
independent code and data. We use code/data relocation to
support the loading and unloading of Erika tasks’ code and
data, as discussed in the previous section. Relocation is initiated
by the Erika OS, when its scheduler decides to load or unload
a task as required. Recall however that applications in Erika
are statically compiled against a set of VA (= IPA) addresses.
As such, relocation is performed by modifying the IPA—PA
address mapping managed by Jailhouse. Erika first informs
Jailhouse that a relocation must be performed. This is done via
a hypercall (i.e., hvc assembly instruction), which was added
to Erika, as shown in Figure 7. Hypercalls in Jailhouse are
services provided by the hypervisor to its cells. A Jailhouse
hypercall receives three arguments; the hypercall code or ID
and two arguments that are specific to the hypercall. We added
to Jailhouse two new hypercall IDs, indicating either load or
unload operations. The second argument is used to encode (i)
the source/destination address in DRAM (page-aligned, least-
significant 12 bits are zero), and (ii) the offset in pages from
the beginning of the SPM where the task needs to the loaded
to/unloaded from (the largest SPM is 2 MB, so the maximum
offset is 512-1, and it takes the 9 least-significant bits). The
third argument encodes the size of the task that needs to be
loaded/unloaded. As shown in [25], the overhead of a hypercall
in Jailhouse on the Ultrascale+ platform is around 400 ns.

1 /% 0x4a48 is the Jailhouse hypercall number

2 =« r0 contains the hypercall ID

3 s« rl and r2 are the two arguments %/

4 asm volatile ("hvc #0x4a48” : "=r" (__r0) : "r” (__r0),”r” (_rl),”r” (_12));

Fig. 7. Erika code to perform a Jailhouse hypercall.

Once Jailhouse receives a request to relocate a task’s code/-
data, it performs the following steps. First, it determines the

absolute source (resp., destination) in DRAM and destination
(resp., source) in SPM for a load (resp., unload) operation.
Next, it modifies the IPA—PA mapping so that the range of
IPA addresses starting at the provided source address (resp.,
destination), and spanning for the number of pages specified
by the size parameter, map to the destination address. After
the remapping is completed, Jailhouse returns control to the
calling environment (Erika OS). The effective copy of the
task into/from SPM is performed by the DMA, as previously
described.

VII. EVALUATION

In this section we present the evaluation of our proposed
schedulability test and architecture. We start the evaluation
showing an experimental analysis of the target platform in
Section VII-A with benchmarks. We then evaluate DMA in
Section VII-B and present the case study of an anomaly
detection application in Section VII-C.

A. EEMBC and SD-VBS Benchmarks

In order to benchmark our proposed system design, we
first run some EEMBC benchmarks [26]. Since the EEMBC
benchmarks are very small and are not designed for high
performance processor, we do not see the slow-down of running
them solo versus contention case. We chose to present here
only FFT and DCT since all of them show a similar pattern.
Here the solo case refers to the scenario where the A53 core
is accessing one of the partition of dual-ported SPM memory
using its dedicated HPM interface. Whereas in the contention
case the benchmark is executing from the DRAM while all the
other A53 cores are also accessing the DRAM. Cache coloring
is enabled in both the experiments.

We also tried the SD-VBS [27] suite that includes vision
benchmarks, since these are computation and data intensive.
Based on the related work [28, 15], we chose two applications
that present high usage of memory (disparity and mser) and
ported them to Jailhouse. We then executed them with SQCIF
input data either from SPM (solo) or from the PS DRAM (when
all the cores are also stressing the DRAM). The results of the
SD-VBS in Figure 8 show that the disparity when executing
from the SPM has an improvement of 11 percent. Whereas,
the mser shows an improvement of approximately 46 percent
compared to the contention case in the DRAM.

Execution Times of the Benchmarks

@ Solo @ Normalized to Solo

r

T T
Disparity mser

Benchmark

Normalized Execution Time
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1

FFT IDC

Fig. 8. SD-VBS and EEMBC Benchmarks Solo Vs Contention
B. DMA Evaluation

In order to move data between the PS DRAM and the
SPM memory inside the PL, we use the PS side DMA. Since
there is only one DMA and three A53 cores, we propose a
fine granularity TDMA-based scheduling of the DMA. The



TABLE II
OBTAINED WCET OF THE BENCHMARKS.

[ Benchmark | BRAM Solo (us) [ DMA Contention (us) |

Disparity 108130.99 119529.54
mser 6315.21 9272.38
IDC 216180.62 217454.01
FFT 5206.47 5206.42

scheduling of the DMA module in our system is handled using
an ARM Cortex R5. Moreover, the DMA transfers the data
between DRAM and the SPM using the LPD interface which
is a low power domain. Table VII-B below provides the DMA
transfer time as well as the overhead of programming the
DMA.

[ Parameters [ Value |

[ DMA Copy Time (I MB) [ 880 us |
| DMA Programming Overhead | 3.89 us |

C. Case Study: Anomaly Detection

Real-time embedded systems are frequent targets for mali-
cious attacks [29]. Recent examples include disabling a car’s
brake system [30], CAN bus attack [31], and injecting a
fatal dose of insulin in an insulin pump [32]. Anomaly-based
detection algorithms monitor the generated data by the target
embedded system and detect deviations from pre-established
specification of normal behavior [29]. In this case study, we
execute a set of anomaly detection algorithms on top of our
predictable platform using data generated by an autonomous
car. We consider the following anomalies in the case study:

o Spikes: a spike is a sequence of contiguous samples that
lie farther a given number of standard deviations from the
current mean of the input data.

o Clipping and Loss: a clipped data signal represents a
series of identical samples at the maximum or minimum
extend of the sample medium. Loss indicates a complete
lost of the input data signal.

« Level Change: this symptom is observed when the mean
of the input data changes significantly in a short amount
of time and then remains consistent at the new level.

o Frequency Change: it occurs when the primary frequency
of a data signal changes over a short period of time.

« Sampled Value Flip-Flop: this anomaly occurs when a
sampled value flip-flops in a short period of time. For
instance, the gear in a vehicle cannot change from rear
to drive and return to gear in a couple of microseconds.

For detecting each of these anomalies, we execute a specific
anomaly detector. The Spike detector keeps tracks of the input
data mean and standard deviation (STD) in a buffer. When the
STD increases or decreases by a defined factor (for instance,
mean + 10 * STD), it issues an anomaly alert. The level change
detector calculates the new mean after a data is received and if
the difference between the new and old means is greater than a
defined value, a level change is detected. The clipping detector
keeps a buffer with N values and for each new data it verifies
how many values are equal to the maximum value in the buffer
(or minimum). If there are an amount of data points with the
same value greater than a defined value, then there is a clipping.
If there is an amount of zeros greater than a defined value,
then there is a loss. The spectrum detector uses Fast-Fourier
Transformation (FFT) and math calculations to detect changes
in the frequency domain. Finally, nfer, a recently introduced
language and system for inferring event stream abstractions,

detects the sampled value flip-flop anomaly [33]. The output
from each detector is a boolean informing whether an anomaly
was found or not in the input data, the timestamp in which
the anomaly has occurred, a note informing the type of the
anomaly, and the detector name (256 bytes in total). We also
consider that a Voter task receives the output from all detectors
and processes them to finally output if the anomaly is a true
or false positive. We want to provide a predictable end-to-end
delay for detectors and the voter, so that anomaly detection
has timing guarantees.

Figure 9 shows an overview of the communication flow of
the tasks in the case study and a possible assignment of tasks
to real-time cores. The anomaly detection algorithms were
implemented in different Erika instances as tasks on top of
Jailhouse and using the Xilinx ZCU102 Ultrascale+ platform.
Recall that each Erika has its own SPM memory and uses a
different cache partitioning, as described in Section VI. The
autonomous car data were collected during operation and stored
in a database. The data is streamed into our case study through
the network using the Redis publish-subscriber interface based
on channels [34]. The detectors subscribe to channels and
receive data once it arrives on those channels. A channel here
means input data from a specific sensor or controller, and hence
its input frequency is known. Examples of data for the channels
are those from the Gear, Throttle, and Steering subsystems of
the car. All channels have an input frequency of 50 Hz (one
new data at every 20 ms). Finally, the Voter is a periodic task;
every time it runs, it reads all available outputs of the five
detectors. It is important to highlight that once the detectors
are integrated into the autonomous car, the data does not need
to be stored, it would go directly from the sensors/controllers
to the detectors, without passing through Linux. In our case
study, we use Linux to allow the streaming of data at the same
rate they were generated in the car. Although Linux may add
unpredictable behavior, we run it in a dedicated core with
cache partitioning.

The autonomous car data (from Gear, Steering, Throttle, etc)
also contains the timestamp in which data was collected, the
input frequency, and the Redis channel name. A data point has
64 bytes in total. A Redis client running on Linux receives
the data and notifies the DMA controller running on the RS
core. The DMA controller then gets the received data and
transfers it to the detector’s SPM memory (in case it is loaded)
or DRAM memory (in case it is unloaded). After that, the
controller requests Jailhouse to interrupt the Erika instance,
informing that new data has arrived in the subscribed channel
and to load/unload tasks accordingly (i.e., local scheduling in
Erika as shown in Section VI-G).

Table III shows the execution time, memory consumption,
and DMA load/unload times for each Erika task (detector).
The execution time was measured using input data from the
autonomous car and represents the obtained WCET in each
detector (i.e., time to process the buffer or input data, depending
on the detector). NFER is the one with more data, and thus
with the longest load and unload times. Spectrum is the longest
in terms of execution time, because it computes FFT and deals
with array transformations.

We then use the described case study to compare our
proposed schedulability test in Section V with two alternatives:
(1) the analysis in [15], which assumes a fixed DMA slot
size, each sufficient to load/unload the largest SPM partition
as discussed in Section IV. We extend the analysis to arbitrary
deadlines by considering the response time of each job under
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Fig. 9. Overview of one possible configuration of the case study on
anomaly detection, showing the communication among tasks (detectors) and
the assignment of tasks to cores.

TABLE III
TIMING AND MEMORY DEMANDS OF THE ANOMALY DETECTION
ALGORITHMS.
BRAM Code Data Tlgltllls‘?e -
Detector | WCET Size Size Time
(us) (bytes) | (bytes) Code+Data (us)

Spike 1784 696 6400 6.23
Clip/Loss 1008 336 12800 11.54

Level 1160.4 796 7680 7.44
Spectrum | 4169.6 2520 1912 3.89

NFER 3185.6 15400 | 309664 285.45

Voter 300 8223 1280 8.34

analysis in the busy interval, similarly to Section V-A. Note
that to ensure a fair comparison, outside of the DMA schedule,
all other parameters are derived from our implemented FPGA
platform, rather than the COTS microcontroller used in [15];
and (2) an ideal (but unrealistic) system, where tasks execute
from main memory without suffering any contention. To avoid
cache-related preemption delays, we consider a standard fixed-
priority non preemptive scheduler.

For defining the size of the fixed DMA slot needed by
the test in [15], we used the same methodology as described
in [15]. We consider the SPM with two partitions of 512 KB
each (I MB in total), which is large enough to accommodate
the largest detector (NFER) in one partition and still is a
multiple of two. Then, we get the DMA time to transfer 1 byte
(0.0009 ps - as shown in Section VII-B), and multiply it by
512 KB, resulting in the DMA fixed slot size of 471.85 ps.
The DMA round length is then set to DMA fixed slot size
multiplied by three (the number of real-time cores).

As shown in Section VII-B, the overhead to program the
DMA in the ZCU102 platform is 3.98 us. For our schedulability
test, we consider the DMA overhead to be equal to 4% of the
DMA slot size (o), resulting in o = 100 ps. To allow a fair
comparison with [15], we split the DMA bandwidth evenly
among the three cores, resulting in a DMA round length (X)
of 300 ps. We set the period of all detectors to 20 ms, which
is the period of the input data. For the Voter task, we set its
period to 15 ms, so we are sure it gets the most up to date
output from the detectors whenever it runs. Deadlines are equal
to periods. Considering this configuration, the total utilization
for one input data channel with the 6 tasks is 0.58 (WCETs
from Table III and periods of 20 ms and 15 ms). We then
vary the number of input data channels from 1 to 5, which in
fact increases the number of tasks and the total utilization of
the system. As we increase the number of tasks, we statically
assign them to the three real-time cores so that the utilization

in each core remains balanced. We compute the response time
for all tasks in all scenarios and present the maximum response
time of any task executing in the same core, obtained by each
schedulability test.
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Fig. 10. Maximum response time (per CPU) for each schedulability test as
the number of channels in the case study increases.

Figure 10 shows the obtained maximum response time per
schedulability test and per core. On the x-axis we vary the
number of channels, while on the y-axis we present the response
time in ps. The dashed horizontal line at 20000 represents the
deadline (20 ms) for the detector tasks (recall that the voter
task has a deadline of 15 ms). A point above the dashed line
means that the maximum response time is greater than the
deadline (task set is not schedulable). We do not plot a data
point in the graph when the schedulability test did not converge
after a threshold (period * 4); for instance, as in the Fixed slot
line in the CPU 1 graph with 2 channels. Note that with 6
channels, the utilization on all cores exceeds 100%.

We can clearly note that our proposed test is superior when
compared to [15]; the reason is that [15] forces the DMA slot
to be sized based on the transfer time for NFER, which is
significantly larger compared to the other tasks. In particular,
note that the results for our proposed test and [15] are closer
on CPU 2, where NFER is allocated, while they show a



much larger difference on CPU 0 and 1. While our proposed
technique supports up to 3 channels, [15] supports only one
(over 100% of more utilization). For a channel number of
4, our proposed technique is schedulable in CPUs 0 and 1,
but is a little bit above the deadline in CPU 2 (22 ms). As
long as we relax the deadline to be slightly larger than period
then we achieve the same performance as the ideal case. We
implemented the schedulability tests and obtained the results
using SchedCAT [35] tool.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have showed how one can design mixed
criticality applications by exploiting the HW features provided
by a modern heterogeneous SoC architecture that incorporates
a multiprocessors and Programmable Logic (PL) . Using the PL
provided in the system, we create a separate piece of ScratchPad
Memory (SPM) to guarantee predictable execution for the real-
time cores that run tasks with hard real-time requirements. A
new finer-granularity DMA scheduling scheme and associated
schedulability analysis of the tasks running from the SPM
is provided. We describe a full-stack implementation of the
proposed techniques and evaluate the system based on existing
benchmark suites and a detailed case study.
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APPENDIX
A. Analysis: Initial and Final Interval Lengths

We now compute the maximum length of the initial blocking
interval B; and final interval F;. Figure 11 shows an example
for B;, where 771 and 7;2 are the lowest priority tasks with the
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Fig. 11. Example initial blocking interval with length B;.

longest execution and load phases, respectively. As in Figure 2,
7; and all higher priority tasks arrive just after the load phase
for 7;9 has started. This causes the interval length to be bounded
by:

B; = max (11.¢™, [12.ld/5] - £ — (£ —0)).  (6)

For F;, we employ the following lemma, which follows
directly from Lemma 3 in [15].

Lemma 1: The length of the final interval is bounded by
the maximum of: (1) the execution time of 7;, followed by one
load phase of any other task and the unload of 7;; or (2) one
unload and one load phase for any two tasks, plus the unload
of T, Py
Note that Figure 2 shows the first case in the lemma, which
is usually the worst one. In this case, a new job of 74 arrives
right at the end of the execution of the job under analysis;
since load phases have higher priority over unload phases, this
forces the load of 74 to be completed before 7; is unloaded.
Based on Lemma 1, and computing the memory phase length
according to Equation 4, we obtain:

F; = max (1;.¢"* + o + [(1.ld + 7;.ul) /5] - %,
o+ [(ndd+mpul + Tyul) /5] - X)),  (T)

where 7; and 7, are the two tasks (different than 7;) with
longest load and unload phases.

B. Analysis: Schedulability Tests

Based on Section V-A, V-B, and Appendix A, Algorithm 1
derives a sufficient schedulability analysis for the task set. For
each task 7;, at lines 4-19, the algorithm iterates over the index
k of the job under analysis of 7;. For each job, the iteration
at lines 5-13 computes an upper bound R;; on the length
B; + H; j; of the interference window; I2; ;, is used to derive
the number of interfering intervals I; j at line 5. The new value
of H;j is then obtained by summing the length of the longest
1I; 1 execution or memory (load plus unload) phases. If at any
point the response time of the job, based on its release time ; j,
becomes higher than the deadline, the algorithm terminates
unsuccessfully at line 10. Otherwise, the response time [R}***
of the task is updated based on Equation 2. If the length of the
busy interval is sufficiently long to include the release on the
next job k£ + 1, then the iteration at lines 4-19 is repeated. If
the maximum response time of all tasks is less than or equal
to their deadlines, we terminate successfully at line 22.

Algorithm 1 Schedulability test

Input: A task set according to Section III

Output: Task set is schedulable or undecided
1: fori=1...N do

Compute B;, F; based on Equations 6, 7

k< 1, R <0

R; ) = B; _

compute [; 5 based on Equation 3 using B; + H; . = R; i

Let £, DM A be the set of I; 1, execution and memory phase lengths
of scheduling intervals

: Sort M = E'U DM A by decreasing order

Ik
8  Hip < ;00 M;

AR

9: if B+ H; j, + F; —t; j, > 7;.D then

10: return UNDECIDED

11: end if _ _

12: if B; + H; . > R, then R; p < B; + H; , then
13: go back to 5

14: end if _

15: R < R, + F

16: R miiX(R?‘ax, R — tik)
17: if 72X > 1; 11 then

18: Eek+1

19: go back to 4

20: end if

21: end for

22: return SCHEDULABLE




